Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры — страница 16 из 58

cos 73,160° = 0,2897

cos 71,548° = 0,3165

Следовательно, мы можем записать уравнение так:

0,2897 × 0,3165 = cos 73,160° × cos 71,548°

Приведенное выше тождество говорит о том, что эта формула эквивалентна следующему уравнению:

Обратившись к таблицам, получим тождество:

Это и есть результат умножения чисел 0,2897 и 0,3165, причем очень точный. Умножьте их с помощью калькулятора, округлите произведение до четвертого десятичного знака, и получите 0,0917.

Приведенный выше способ умножения чисел может показаться слишком сложным, но в конце XVI столетия он был самым легким. Вместо того чтобы расписывать операцию умножения в столбик, что требует больших усилий и времени, достаточно просто посмотреть в сборник тригонометрических таблиц, сложить два числа, найти их разность, снова посмотреть в таблицы, сложить два числа и разделить их на два. Этот метод обозначается термином простаферезис (prosthaphaeresis), который образован от греческих слов, означающих сложение и вычитание, — prosthesis и aphaeresis.

Метод простаферезиса вдохновил шотландца Джона Непера на поиск еще более эффективного способа преобразования умножения в сложение, что в 1614 году привело к открытию логарифма. Вместо умножения двух чисел теперь можно было сложить их логарифмы. Логарифмы Непера существенно упростили процесс умножения, из-за чего метод простаферезиса утратил популярность. Тем не менее на протяжении нескольких десятилетий триумфа прямоугольный треугольник — квинтэссенция геометрии — играл двойную роль в качестве невидимого оружия арифметики.

Хотя треугольники, несомненно, весьма полезны по отдельности, в командной игре они особенно эффективны. Если нарисовать сеть треугольников (как показано на рисунке ниже) и измерить в ней все углы, то достаточно определить точную длину одной линии, чтобы рассчитать длину всех остальных линий сети. Предположим, нам известна точная длина линии, выделенной жирным; обозначим ее как l. Тригонометрическое тождество, которое принято называть теоремой синусов, дает нам формулу расчета длины двух других сторон треугольника:

где α — угол, противоположный жирной линии, β и γ — два других угла треугольника. Поскольку все углы в треугольниках сети известны, на основании длины каждой очередной линии можно вычислить длину двух других линий — и так далее, пока не будет известна длина каждой линии сети. Этот метод применим к любым треугольникам, а не только к прямоугольным.

В 1533 году голландский математик Гемма Фризиус понял, что метод триангуляции как нельзя лучше подходит для картографии, поскольку измерять углы гораздо легче, чем большие расстояния[69]. Его идея состояла в том, чтобы выбрать точки на местности так, чтобы от каждой из них было видно две других, и построить таким образом сеть треугольников. Он измерил углы между точками с помощью теодолита — круглого транспортира на подставке. Определив длину базисной линии, Гемма Фризиус смог рассчитать все остальные расстояния, используя тригонометрические таблицы, а затем нарисовал точную карту местности.

Триангуляция

Франция стала первой страной, в которой триангуляция была выполнена по всей территории, и произошло это в 1668 году. Единственная сложная задача в любом виде триангуляции заключается в измерении первого расстояния. Аббат Жан Пикар взял за основу участок прямой дороги от Вильжюиф до Жувиньи длиной в 11 километров, который тщательно измерил с помощью деревянных мерных реек. Затем Пикар отправился на север, используя в качестве вершин треугольников такие ориентиры, как часовые башни и вершины холмов, и измеряя только углы между ними. Добравшись до Атлантического океана, Пикар обнаружил, что побережье гораздо ближе расположено к Парижу, чем считалось раньше. «Твоя работа стоила мне приличной части моих владений!» — фыркнул Людовик XIV. Начатый Пикаром процесс триангуляции продолжался еще столетие после его смерти, пока территорию Франции не покрыли четыре сотни треугольников. Знаменитая карта Франции, составленная в итоге, содержала больше деталей, чем любая другая из созданных ранее карт, и была выполнена почти в том же масштабе, что и стандартные туристические карты Michelin, доступные в наше время.

Французы испытывали amour fou — безумную любовь к треугольникам. В 1735 году Людовик XV отправил две команды геодезистов-триангуляторов в противоположные концы Земли, для того чтобы решить важный научный спор. Земля — неидеальная сфера. Шли жаркие дискуссии вокруг того, какую форму она имеет — сплюснутую у полюсов (как грейпфрут) или на экваторе (как лимон). Эта тема стала предметом раздора между британцами, ратующими за первое, и французами, которые с ними не соглашались. Французы поняли, что можно правильно определить, на какой именно плод похожа Земля, сравнив расстояние, которое покрывает на поверхности Земли один градус широты у Северного полюса и у экватора. Если бы Земля имела форму идеальной сферы, длина одного градуса широты была бы везде одинаковой и составляла бы окружности Земли. Однако, если бы у полюсов это расстояние было больше, это означало бы, что земной шар сплюснут у полюсов, а если меньше, значит, у экватора. Французы отправили одну экспедицию в Лапландию, а другую — в сторону современного Эквадора в Южной Америке. Наблюдая за звездами, они рассчитали начальную широту, а затем в Лапландии начали строить сеть триангуляции строго на север, а в Эквадоре — строго на юг. В конечной точке триангуляции они снова определили широту посредством наблюдений за звездами. После длительной борьбы со снежными бурями и москитами в Скандинавии и высотной болезнью в Андах две группы пришли к выводу, что в Лапландии один градус широты длиннее. Британцы оказались правы: наш мир действительно похож на большой pamplemousse («грейпфрут» по-французски).

Французы использовали треугольник в качестве рабочего инструмента для социального и научного развития. Для Великобритании же это был инструмент управления империей[70]. Великое тригонометрическое исследование Индии, проводившееся в течение большей части XIX столетия, стало крупнейшим научным проектом своего времени. Говорят, по количеству погибших людей и потраченных денег оно превзошло многие индийские войны той эпохи. Процесс измерения начался с южной оконечности Индийского полуострова, продолжился по джунглям, Деканскому плоскогорью и северным равнинам и закончился в Гималаях под руководством полковника Джорджа Эвереста (правильное произношение его имени — «Иврест»).

В ходе триангуляции измеряются как горизонтальные, так и вертикальные углы, что дает возможность создать трехмерную сеть треугольников, позволяющую топографам измерить и высоту объектов, и расстояние между ними. В Гималаях высота горных вершин представляла наибольший интерес. В то время самой высокой в мире считалась гора Чимборасо в Эквадоре, высоту которой столетием ранее измерили французы. Гималаи с их покрытыми снегом вершинами называли величественными горами, но заявления о том, что они выше Анд, воспринимались как очередная небылица из страны фокусников и заклинателей змей. Однако это мнение изменилось, когда экспедиция Джорджа Эвереста добралась до цепи гор, вздымающихся в небо, у самой высокой из которых не было местного названия. Впоследствии ее нарекли «Эверест» — по имени полковника Эвереста. Это самая высокая гора в мире, и ее название все произносят неправильно.

Северо-восточная территория Великой тригонометрической службы Индии, в том числе Колката (бывшая Калькутта) и Гималаи


Science Museum/Science & Society Picture Library

В Великобритании создание первой триангуляционной сети, охватывающей всю территорию страны, осуществлялось в период с 1783 по 1853 год. (Один конец базисной линии находится сейчас на территории автопарка аэропорта Хитроу, где размещен небольшой памятный знак. Базисные линии и аэропорты чаще всего располагаются на равнинах.) Повторная триангуляция началась в 1935 году и продолжалась до 1962 года. Управление геодезии и картографии установило в вершинах треугольников более шести тысяч бетонных геодезических знаков, ставших основой создания сети координат, используемой в официальных картах до сих пор.

Однако результаты повторной триангуляции почти сразу же устарели. Необходимость построения триангуляционной сети в масштабах всей страны была обусловлена тем, что измерять углы гораздо легче, чем расстояние между объектами. Но в 1960-х годах появилась новая лазерная технология, позволяющая точно определять большие расстояния. Достаточно разместить лазерный передатчик в одном месте, а приемник — в другом, и лазерный луч пройдет этот отрезок со скоростью света. Расстояние от источника до цели равно произведению скорости света на время прохождения этого расстояния. Когда у геодезистов появилась возможность использовать лазерные приборы, у них отпала необходимость в построении треугольников.

В Великобритании осталось 6200 геодезических знаков, и все они стали местом паломничества, причем не только для таких людей, как Роб Вудолл, но и для искателей приключений самых разных мастей. Геометрическая простота этих знаков, которые представляют собой пирамидальные обелиски с плоской верхушкой, придает им непреходящее мистическое очарование. Сейчас, когда они изрядно обветшали и потрепаны временем, поневоле задаешься вопросом: может, их поставили здесь друиды, а не географы?

Тем не менее новые технологии все же не могут обойтись без треугольников. Тригонометрические функции — неотъемлемая часть Глобальной системы позиционирования (Global Positioning System, GPS), инфраструктуры на основе спутниковой связи, которая устанавливает местоположение наших смартфонов и автомобильных навигаторов, в каком бы месте земного шара мы ни находились. Каждый спутник сети расположен на независимой орбите, которая определяется на основании ряда параметров, рассчитанных с помощью синусов и косинусов. Для того чтобы мой телефон вычислил свое местоположение, он должен получить такие координаты минимум с четырех спутников. Когда это происходит, он обрабатывает эти данные, обращаясь к таблице синусов и косинусов, хранящейся в его памяти.