Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры — страница 34 из 58

Однако в древней Азии допускали существование отрицательных величин — правда, в определенной степени[122]. Ко временам Евклида у китайцев уже была система вычислений, в которой использовались бамбуковые палочки. Обычные палочки представляли положительные числа, их китайцы называли «истинными», а палочки, покрашенные в черный цвет, олицетворяли отрицательные числа, их называли «ложными». Как показано ниже, китайцы размещали палочки на разграфленной доске таким образом, чтобы каждое число занимало отдельную ячейку, а каждая колонка соответствовала одному уравнению. Опытный вычислитель решал уравнения, передвигая бамбуковые палочки. Если решение состояло из обычных палочек, это было истинное число, которое принималось. Если решение состояло из черных палочек, это было ложное число, и оно отбрасывалось. Тот факт, что китайцы использовали физические объекты для представления отрицательных величин, свидетельствовал о существовании этих чисел, хотя они и были всего лишь инструментами для вычисления положительных величин. Китайцы поняли одну очень важную истину: если математические объекты приносят пользу, не имеет значения, что они не согласуются с повседневным опытом. Пусть этой проблемой занимаются философы.

Китайцы раскладывали бамбуковые палочки на разграфленной доске; обычные палочки символизировали положительные числа, черные — отрицательные, что позволяло записывать и решать уравнения

Через несколько столетий в Индии математики нашли для отрицательных чисел материальный контекст — деньги. Если я одалживаю у вас пять рупий, у меня получается долг в пять рупий — отрицательная величина, которая станет нулевой только после того, как я верну вам эту сумму. Астроном VII века Брахмагупта установил правила арифметических операций с положительными и отрицательными числами, которые назвал «имуществом» и «долгом». Кроме того, он ввел число ноль в его современном понимании.

Долг минус ноль — это долг.

Имущество минус ноль — это имущество.

Ноль минус ноль — это ноль.

Долг, вычтенный из нуля, — это имущество.

Имущество, вычтенное из нуля, — это долг.

И так далее…

Брахмагупта описывал точное значение имущества и долга с помощью нуля и других девяти цифр, которые легли в основу десятичного представления чисел, используемого в настоящее время. Индийские числительные распространились на территории Ближнего Востока, Северной Африки, а к концу Х века — и в Испании. Тем не менее понадобилось еще три столетия, прежде чем отрицательные числа получили широкое признание в Европе. Такая задержка была обусловлена тремя причинами: историческая связь с долгами, а значит, и с порочной практикой ростовщичества; всеобщая подозрительность в отношении новых методов, приходящих из мусульманских земель; продолжительное влияние древнегреческой философии, согласно которой величина не может быть меньше, чем ничто.

Со временем счетоводы привыкли к использованию отрицательных чисел в своей профессии, математики же очень долго остерегались их. В XV и XVI веках отрицательные величины были известны как абсурдные числа (numeri absurdi)[123], и даже в XVII столетии многие считали их бессмысленными. В XVIII веке преобладал следующий аргумент против отрицательных чисел. Рассмотрим такое уравнение:

С арифметической точки зрения это правильное утверждение. Тем не менее оно парадоксально, поскольку гласит, что отношение меньшего числа (−1) к большему (1) эквивалентно отношению большего числа (1) к меньшему (−1). Этот парадокс стал предметом множества дискуссий, но никто так и не смог его объяснить. В попытках понять смысл отрицательных чисел многие математики, в том числе и Леонард Эйлер, пришли к невероятному выводу, что эти числа больше бесконечности[124]. Данная концепция вытекает из анализа такой последовательности:

Что эквивалентно ряду:

3,3; 5; 10; 20…

По мере уменьшения числа в нижней части дроби (знаменателя) от 3 до 2, а затем до 1 и 1/2, абсолютное значение дроби становится больше, а когда значения знаменателя приближается к нулю, значение дроби стремится к бесконечности. Была выдвинута гипотеза, что, когда знаменатель равен нулю, значение дроби бесконечно, а когда он меньше нуля (другими словами, когда это отрицательное число), дробь должна быть больше бесконечности. В настоящее время мы избегаем этой парадоксальной ситуации, утверждая, что бессмысленно делить число на ноль. Дробь 10/0 не бесконечна; она «не определена».

В этом смешении разных мнений прозвучала одна четкая и понятная концепция, принадлежавшая английскому математику Джону Уоллису, который придумал эффективный способ визуальной интерпретации отрицательных чисел. В написанном в 1685 году труде A Treatise of Algebra («Трактат по алгебре») Уоллис впервые представил числовую ось (см. рисунок ниже), на которой положительные и отрицательные числа отображают расстояния от ноля в противоположных направлениях. Уоллис писал, что если человек отойдет от ноля вперед на пять ярдов, а затем вернется назад на восемь ярдов, то он «переместится на позицию, которая на 3 ярда дальше, чем ничто… А значит, −3 — это та же точка на линии, что и +3, но не вперед, как должно быть, а назад». Заменив концепцию количества концепцией позиции, Уоллис показал, что отрицательные числа нельзя считать «ни бесполезными, ни абсурдными». Как оказалось, это было явное преуменьшение. Понадобилось несколько лет на то, чтобы идея Уоллиса получила широкое распространение, но теперь, по прошествии времени, очевидно, что цифровая ось — самая успешная разъяснительная схема всех времен. У нее множество разных областей применения, от графиков до термометров. Теперь, когда мы можем увидеть отрицательные числа на числовой оси, у нас больше нет концептуальных трудностей с тем, чтобы представить себе, что это такое.

Числовая ось

Немецкий философ Иммануил Кант тоже вступил в полемику по поводу отрицательных чисел, заявив в своем труде Attempt to Introduce the Concept of Negative Quantities into World-Wisdom («Опыт введения в философию понятия отрицательных величин»), что бессмысленно использовать против них метафизические аргументы[125]. Он доказал, что в реальном мире многое может иметь как положительное, так и отрицательное значение, подобно двум противонаправленным силам, воздействующим на объект. Отрицательное число представляет собой не отрицание числа, а скорее, сопоставимое противоположное.

Тем не менее даже в конце XVIII столетия еще оставались математики, глубоко убежденные в том, что отрицательные числа — это «специальный термин, лишенный здравого смысла; но, будучи однажды введенным в оборот, подобно многим другим выдумкам, находит своих самых рьяных сторонников среди тех, кто любит принимать все на веру и не терпит тяжелый труд серьезных размышлений»[126]. Уильям Френд, второй среди лучших студентов, изучавших математику в Кембридже, написал эти слова в 1796 году в книге, которая стала уникальной в математической литературе: это было введение в алгебру, не содержащее ни единого отрицательного числа.

Когда мы изучаем отрицательные числа в школе, нам не рассказывают всю эту предысторию. Мы принимаем отрицательные числа по аналогии с числовой осью, а затем узнаем поразительную новость:

Минус, умноженный на минус, дает плюс.

Вот это да! Числовая ось прекрасно справляется с визуальной репрезентацией отрицательных чисел, но она не дает представления о том, что происходит, когда мы умножаем их друг на друга. Математика становится еще сложнее.

Почему произведение двух отрицательных чисел равно положительному числу? Потому что это вытекает из правил умножения положительных чисел. Мы принимаем, что два отрицательных числа образуют положительное, поскольку это обеспечивает связность арифметических операций, а не потому, что в основе данной системы лежит какой-то смысл. Это необходимый структурный элемент того основания, которое не дает зданию чисел разрушиться. Рассмотрим числовую ось. Если я сделаю два шага вперед от 0, я попаду в позицию 2. Если я повторю эти два шага, я доберусь до 4, а если сделаю это еще раз, то достигну точки 6. Точно так же, если я перемещусь на две единицы назад от ноля, я попаду в точку −2, а если повторю эти шаги еще два раза, то выйду на −6.

Все эти операции можно записать в виде таких выражений:

2 + 2 + 2 = 6

−2 −2 −2 = −6

Что эквивалентно следующим произведениям:

3 × 2 = 6

3 × −2 = −6

Эти выражения говорят нам о том, что если положительное число умножить на положительное, получится положительный результат, а если положительное число умножить на отрицательное, результат будет отрицательный. Для того чтобы выяснить, что произойдет в случае перемножения двух отрицательных чисел, давайте в последнем выражении подставим вместо числа 3 разность (4–1), что даст нам следующее уравнение:

(4–1) × −2 = −6

Это уравнение можно записать так:

(4 × −2) + (−1 × −2) = −6

Мы знаем, что согласно правилам выполнения арифметических операций с положительными числами, когда два члена выражения, взятые в скобки, умножаются на одно число, необходимо умножить каждый член выражения в скобках на это число отдельно. (Это правило известно как закон дистрибутивности.) Получается следующее уравнение:

−8 + (−1 × −2) = −6

Следовательно:

(−1 × −2) = 2

Вот мы и пришли к тому, что искали. Минус, умноженный на минус, дает плюс.

Одна из причин того, почему нам так трудно понять принцип умножения отрицательных чисел на концептуальном уровне, состоит в том, что в жизни существует множество ситуаций, в которых арифметика создает неправильную модель. Не успел учитель объяснить нам эту идею, как нам рассказывают, что два заблуждения — еще не правда. В лингвистике двойное отрицание может быть либо отрицанием, либо утверждением, в зависимости от контекста и языка. Когда я изучал португальский, мне пришлось привыкать к тому, что на этом языке фразу I know nothing (одно отрицание) необходимо говорить так: