, позволяющую вычислять градиент в любой точке кривой. Обозначив градиент символом y´, мы можем записать новое уравнение: y´ = 2x, которое еще известно как производная исходной кривой.
Верхний левый график на представленном ниже рисунке — это кривая y = x2, а непосредственно под ним — ее градиент, y´ = 2x, являющийся прямой линией. Когда x равен 1, кривая имеет значение 1, а градиент равен 2. Когда x равен 2, кривая имеет значение 4 и градиент равен 4. Эта кривая повышается в форме параболы, а градиент — в форме прямой линии. А теперь забудьте о геометрии и подумайте о математике. Оба графика описывают поведение движущегося объекта. Если исходная кривая отображает положение объекта во времени, то производная — мгновенное значение скорости. Эти графики показывают, что за 1 единицу времени объект проходит 1 единицу расстояния, а его скорость — 2. За 2 единицы времени объект проходит 4 единицы расстояния, а его скорость равна 4 и т. д. По сути, верхняя кривая моделирует позицию объекта в момент его падения под воздействием силы тяжести: пройденное расстояние пропорционально квадрату истекшего времени. Воспользовавшись методом исчисления, Ньютон показал, что мгновенное значение скорости падающего объекта увеличивается по линейному закону.
Градиент параболы, изображенной на верхнем левом рисунке, — прямая линия, а градиент кривой А — кривая В
Я выбрал кривую y = x2, потому что ее производная вычисляется достаточно просто, но метод Ньютона применим ко всем гладким кривым при условии наличия уравнения, описывающего соответствующую кривую. На верхнем рисунке справа показана еще одна кривая, а ниже — кривая ее градиента, или производной. Но здесь я опустил уравнения этих кривых и просто назвал их А и В — мне хотелось бы, чтобы вы прочувствовали всю красоту данной трансформации. Градиент кривой А в каждой ее точке изображен на нижнем графике в виде кривой В. Давайте совершим путешествие по кривой А слева направо. Эта кривая повышается, достигает вершины, опускается, доходит до нижней точки, а затем снова поднимается. Другими словами, градиент имеет положительное значение, достигает нуля в тот момент, когда кривая на мгновение становится горизонтальной, затем принимает отрицательное значение, повышается до нуля и снова становится положительным. Но ведь именно это и происходит с кривой В! Сначала она проходит в области положительных значений, затем пересекает горизонтальную ось, переходит в область отрицательных значений, а потом снова врывается в положительную плоскость. (Пунктирные вертикальные линии показывают соответствие между важными точками верхней кривой и нулевыми значениями градиента.) Когда я впервые увидел такую кривую вместе с кривой градиента, я был поражен. Мне казалось настоящим волшебством то, что изменение величины, заданное одной кривой, идеально отображается другой кривой.
Концепция бесконечно малых величин позволила разработать метод определения градиентов, а также найти способ вычисления площадей. Мы уже видели, как Архимед рассчитывал площадь, ограниченную параболой и прямой, суммируя площадь треугольников все меньшего размера, а также как математики эпохи Возрождения усовершенствовали эту методику, разделив площадь на бесконечно малые сегменты. Метод флюксий Ньютона делает возможным определение площади под кривой посредством разделения этой площади на бесконечное количество бесконечно малых вертикальных полос.
Например, зная уравнение кривой С, изображенной на рисунке ниже, с помощью исчисления мы можем вывести уравнение заштрихованной области А между началом координат и точкой х на горизонтальной оси.
Следовательно, при наличии той или иной кривой исчисление предоставляет нам две возможности: вывести уравнение ее градиента или уравнение площади под ней. Но вот что интересно: эти две процедуры носят взаимно обратный характер! Градиент и площадь — это, по сути, одно и то же явление, рассматриваемое под разными углами. Такой поворот сюжета достоин мультсериала «Скуби-Ду»: в последнем акте этой математической драмы оказывается, что два разных персонажа на самом деле представляют собой один и тот же объект. Этот результат, получивший название «основная теорема исчисления», стал одним из самых неожиданных открытий XVII столетия.
Если не вдаваться в детали, эта теорема гласит, что если площадь под кривой С равна А, то градиент кривой А равен С. Чтобы было понятнее, вспомните о том, что кривые, площади и градиенты записываются в виде уравнений. С — это кривая, которая также имеет свое уравнение. С помощью исчисления мы можем вывести уравнение А для площади, лежащей под этой кривой. Основная теорема исчисления гласит, что производная (или градиент) уравнения А равна С.
Давайте посмотрим, как это работает, когда С — это прямая y = 2x, представленная на рисунке ниже. Площадь треугольника равна произведению половины основания на высоту. (Мы могли бы вывести эту формулу с помощью бесконечно малых величин, но нам не нужно этого делать, поскольку она уже известна.) Следовательно, площадь А под линией от 0 до х равна х/2 × 2x, или x2, что дает уравнение площади под линией А = x2. Но это же уравнение описывает и кривую на рисунке справа — параболу. Вспомните размещенный немного выше график, на котором показано, как определение градиента кривой дает возможность перейти от кривой к прямой линии. На рисунках ниже показано, как вычисление площади под кривой позволяет перейти от прямой к параболе. Следовательно, градиент и площадь — это две стороны одной медали.
Вычисление площади под прямой y = 2x и ее отображение в виде кривой
Исчисление позволяло Ньютону взять уравнение, определяющее положение объекта, и вывести из него другое уравнение, описывающее мгновенное значение скорости этого объекта. Кроме того, благодаря исчислению он мог взять уравнение мгновенного значения скорости объекта и вывести из него другое уравнение, описывающее его положение. Исчисление предоставляло в распоряжение Ньютона те математические инструменты, с помощью которых он разработал законы динамики. Ньютон называл переменные своих уравнений флюентами, а градиенты — флюксиями и обозначал их буквами и с точками сверху.
Когда после двух лет пребывания в Линкольншире Ньютон вернулся в Кембридж, он никому не рассказал о методе флюксий, о чем впоследствии очень сожалел. На континенте над созданием аналогичной системы работал Готфрид Лейбниц, немец по рождению, являющийся человеком вне границ — юристом, дипломатом, алхимиком, инженером и философом. Кроме того, еще и математиком, который придавал большое значение системе обозначений. Символы, введенные им для своей системы, были более понятны, чем символы Ньютона, — именно их мы и используем до сих пор.
Лейбниц ввел обозначения dx и dy для бесконечно малой разности между значениями x и y. Градиент, который представляет собой отношение одной бесконечно малой разности к другой, он записывал как dx/dy. Поскольку Лейбниц употреблял слово difference («разность»), вычисление градиента было обозначено термином «дифференцирование». Кроме того, Лейбниц ввел напоминающий вытянутую букву s символ ∫ для обозначения расчета площади. S — это сокращение от слова summa («сумма»), поскольку, как мы уже видели, площадь рассчитывается как сумма бесконечно большого количества бесконечно малых величин. По рекомендации своего друга Иоганна Бернулли Лейбниц назвал этот метод calculus integralis — интегральное исчисление, а расчет площади стал известен как интегрирование. Преимущество такого длинного (и поддающегося расширению) символа состоит в том, что рядом с ним можно указать значения на горизонтальной оси, ограничивающие рассчитываемую площадь. В таком случае площадь А, показанная на рисунке с кривой С, записывается так:
что читается как «интеграл по С от 0 до x». Введенный Лейбницем символ ∫ — самый величественный символ в математике, напоминающий форму резонаторного отверстия в виолончели или скрипке.
Более двух десятилетий Лейбниц и Ньютон вели уважительную дружескую переписку по поводу бесконечно малых величин[147]. Когда Лейбниц первым опубликовал детали своей системы исчисления, все предположили, что он изобрел ее самостоятельно. Но в 1699 году, через несколько лет после того, как Ньютон обнародовал свой метод флюксий, молодой швейцарский математик, живший в Англии, обвинил Лейбница в краже идей Ньютона. Через пять лет появилась реакция на это заявление: в журнале Acta Eruditorum вышла статья (по всей вероятности, написанная Лейбницем) с предположением о том, что это Ньютон совершил плагиат. Такие перепалки между британским и континентальным научным сообществом становились все ожесточеннее, и эта вражда заполнила все последующие годы жизни Лейбница и Ньютона. Споры по поводу приоритета были в то время далеко не редкостью, но ни в один из них не были вовлечены ученые такого масштаба, и ни один не стал столь гневным и продолжительным. Эта вражда не закончилась даже после их смерти. Великобритания, где из чувства национальной гордости использовали флюксии Ньютона вместо дифференциалов, оказалась изолированной от европейских научных достижений на протяжении лучшей части столетия. Только когда англичане приняли систему обозначений Лейбница и перешли, как писал Огастес де Морган, «от эпохи флюксий с точечными обозначениями к эпохе исчисления с его деизмами», Британия восстановила свой статус в математике[148].
В 1891 году немецкая компания Bahlsen начала выпускать прямоугольное масляное печенье с зубчатыми краями под названием Leibniz — по имени самого известного выходца из Ганновера. По случайному совпадению в тот же год один булочник из Филадельфии сделал свое первое пирожное Fig Newton — рулет с инжирным кремом, названный в честь города Ньютона в штате Массачусетс. Так что в наши дни спор «Ньютон против Лейбница» протекает разве что во время чаепития.