Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры — страница 45 из 58

а и b, кривизна кривой в точке А равна , в точке В — . Чтобы понять концепцию максимально приближенной окружности, можно представить себе, что кривая — это дорога. Вы едете по ней на автомобиле, и у вас заклинивает руль, скажем, в точке А. Если вы продолжите движение, его траектория и будет представлять собой максимально приближенную окружность в точке А.

Таким образом, идея Холбрука состояла в том, чтобы делать часть дороги в форме кривой, кривизна которой увеличивается линейно по мере перемещения по этому участку, поскольку именно на такой кривой объект находится под воздействием центростремительной силы, растущей по линейному закону[151]. Возможно, Холбрук даже не знал о том, что, по сути, описывает знаменитую кривую, впервые изученную Леонардом Эйлером в XVIII столетии. Речь идет о кривой под названием «клотоида»[152], которая изображена на рисунке ниже.

Клотоида

Начиная с конца XIX века клотоида (или, скорее, ее центральный фрагмент) стала стандартной переходной кривой на железных дорогах. Представьте себе, что участок прямой дороги трансформируется в такую кривую в точке 0 и далее следует вдоль нее. Кривизна постепенно увеличивается до тех пор, пока не сравняется с кривизной кругового участка. Когда в ХХ столетии на доминирующие позиции вместо поезда вышел автомобиль, клотоида по той же причине превратилась в основной элемент проектирования дорог[153]. Это самая подходящая кривая для езды на автомобиле между прямым и круговым участками дороги. Сеть автомагистралей — живой музей клотоид. Эти характерные кривые до сих пор используются в качестве формы поворотов на автомагистралях, скользких дорогах и особенно часто — на многоуровневых дорожных развязках с множеством переходов от прямых к круговым участкам. Если бы вы были инопланетянином, пролетающим на низкой высоте над сельской местностью, испещренной автомобильными дорогами и железнодорожными путями, вы вполне могли бы прийти к выводу, что клотоида — любимая кривая человечества.

Клотоида также решила проблему проектирования аттракционов, позволив найти ответ на вопрос, какова самая безопасная форма американских горок с мертвой петлей. В середине XIX века парижский инженер М. Клавьер сконструировал аттракцион, на котором одна вагонетка съезжала вниз по прямому участку, а затем делала резкий кувырок вдоль петли высотой почти четыре метра, прежде чем выйти на прямой участок поменьше, ведущий вверх к конечной остановке[154]. Во Франции было построено несколько таких «подвесных железных дорог», но вскоре все их закрыли из-за большого количества травм шеи, полученных людьми в момент перехода с прямого на круговой участок. После этого более ста лет организаторы аттракционов считали, что сделать безопасную мертвую петлю невозможно.

Аттракцион с мертвой петлей. Гавр, 1846 год


Из журнала: L’Illustration, 1846

Так продолжалось до тех пор, пока в 1970-х годах немецкий инженер Вернер Штенгель не проанализировал проблему и не пришел к выводу, что ее может решить клотоида. Штенгель сконструировал первый современный аттракцион с мертвой петлей под названием Great American Revolution, который начал функционировать в 1976 году в парке аттракционов Six Flags Magic Mountain. Вагонетка спускается вниз по слегка наклоненному прямому участку трассы, после чего переходит на участок клотоиды и движется по нему до тех пор, пока радиус кривой не достигнет значения 7 метров; в этот момент вагонетка начинает делать петлю, как показано на рисунке ниже. Вагонетка находится на круговом участке с радиусом 7 метров примерно до половины полного оборота, а затем зеркальная версия первой клотоиды подхватывает вагонетку и возвращает на прямой участок. «Это очень мягкий переход, — сказал Штенгель. — Изменение силы позволяет сделать эффектную американскую горку, но оно должно быть приемлемым для организма».

Аттракцион Great American Revolution сразу же обрел такую популярность, что даже получил дань уважения в стиле семидесятых, став темой фильма-катастрофы Rollercoaster (в русском прокате — «Русские горы»), в котором преступники планируют взорвать бомбу в день открытия аттракциона. С тех пор во всем мире было открыто около двухсот аттракционов такого типа, построенных по тому же принципу, что и аттракцион Штенгеля. Аттракцион в форме перевернутой капли, сконструированный с применением клотоиды, — это и современный символ нашей ненасытной жажды захватывающих приключений, и памятник математике Исаака Ньютона. Клотоида — механическая кривая, получившая второе воплощение в виде стального монстра, поражающего воображение.

Оригинальный чертеж аттракциона Great American Revolution, выполненный Вернером Штенгелем


© Вернер Штенгель

Физические законы Ньютона проросли из крохотного зерна бесконечно малых величин — величин, которые меньше всего остального, но больше нуля. Однако, несмотря на их плодотворную роль в создании новой науки, концепцию малых величин подвергали критике за внутреннюю противоречивость. «Что это за… крохотные приращения? — упорствовал философ и епископ Джордж Беркли. — Это и не конечные величины, и не бесконечно малые величины, и даже не ничто. Почему бы нам не называть их призраками величин, ушедших в мир иной?»[155]. Резкие замечания Беркли вызывали ропот среди ученых, вполне справедливо считавших исчисление величайшим математическим достижением эпохи Просвещения. Но все же священник был в какой-то мере прав. Хотя концепция бесконечно малых величин и обеспечивала получение правильных ответов, она не была до конца продуманной с научной точки зрения. Полемика, которую спровоцировал Беркли, поставила математиков на путь переоценки ценностей и самокритики. Какие концепции приемлемы, а какие — нет? В какой мере математика должна соответствовать здравому смыслу?

9. Назвние етой главы содержит три ошбки

Автор исследует математическое доказательство. Он высмеивает логическую дедукцию и встречается с анонимным членом тайной математической секты

Предлагаю вам решить головоломку. Однажды я поднялся на гору, переночевал на вершине, а на следующий день спустился вниз по тому же маршруту. Есть ли такая точка, в которой я был в одно и то же время в разные дни?

Подумайте об этом секунду.

Или две.

Ответ: да. Представьте себе, что оба путешествия происходят в один день. Если я одновременно поднимаюсь вверх и спускаюсь вниз, неизбежно наступит момент, когда я столкнусь с самим собой, и тогда значения времени и высоты совпадут.

Если вы примете аргумент о том, что в оба дня должен быть момент времени, когда я находился на одной высоте, я доволен: мое доказательство сделало свое дело. Математическое доказательство — это всего лишь инструмент, используемый одним человеком для того, чтобы убедить другого человека в истинности математического утверждения — а я вас убедил[156]

Однако более требовательного математика могут не удовлетворить мои доводы. Он может отбросить их по причине недостаточной строгости. Где доказательство того, что я столкнусь сам с собой? Давайте нарисуем график, отображающий мое восхождение от подножия горы на высоте А к ее вершине на высоте В, а также наложим на него маршрут моего спуска на следующий день, как показано на рисунке ниже. Теперь вопрос стоит по-другому: существует ли точка, в которой эти две линии пересекутся? Большинство читателей ответят: конечно же, есть! Но придирчивого математика мне так и не удалось убедить.

До конца XVIII века считалось, что если кривая поднимается от высоты А до высоты В, то она обязательно должна пройти каждую точку между А и В. На интуитивном уровне это утверждение кажется очевидным. В действительности оно согласуется с тем, как определялась тогда непрерывная кривая. Однако, когда математики внимательнее проанализировали свойства непрерывности, они пришли к выводу о необходимости более четких определений. Утверждения, которые воспринимались раньше как нечто само собой разумеющееся, были переведены в категорию теорем, требующих доказательства на основании еще большего количества исходных предположений. К их числу относилось и приведенное выше утверждение о том, что непрерывная кривая с минимальным значением А и максимальным значением В обязательно должна пройти все промежуточные значения; сейчас оно известно как теорема о промежуточном значении. Но ее доказательство настолько сложное, что его изучают только в университетах, хотя его будет достаточно, чтобы убедить нашего дотошного друга. В итоге он согласится с тем, что две кривые на представленном выше графике пересекаются в определенной точке, поскольку это утверждение вытекает из доказательства за несколько шагов.

Маршрут восхождения на вершину горы и спуска к ее подножию

Эксперименты — движущая сила науки. Доказательства — движущая сила математики. Существует множество способов проведения экспериментов, так же как и множество методов доказательств математических утверждений. В этой главе мы рассмотрим некоторые из них. Кроме того, проанализируем, как изменилось отношение к доказательствам, и пообщаемся с анонимным членом тайного общества, исповедующего математическую строгость. Но сначала давайте перекусим.

Теорема о промежуточном значении может показаться очевидной, но у нее есть ряд интересных следствий. Одно из них — теорема о блинах, которую я предпочитаю описывать в менее сладких выражениях. Если вы рассыплете на столе соль (или подадите блины), мы можем доказать наличие прямой, которая делит соль (или блинчик) на две части равной площади, причем прямая может быть проведена под каким угодно углом