Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры — страница 47 из 58

Отсюда следует вывод: либо М + 1 — это новое простое число, либо М + 1 делится на новое простое число. В любом случае задача Евклида выполнена. Он доказал, что конечное множество не покрывает всю совокупность простых чисел.

В доказательстве Евклида применен принцип, который обозначается термином reductio ad absurdum — «приведение к абсурду», когда абсурдный вывод демонстрирует ошибочность предпосылки. На шаге 4 (2) абсурдный вывод состоит в том, что на p должно делиться как число М, так и число М + 1, а ошибочная предпосылка в том, что число p принадлежит конечному множеству простых чисел. В книге A Mathematician’s Apology[160] преподаватель Оксфордского университета Годфри Гарольд Харди писал, что доказательство Евклида «остается таким же актуальным и значимым, как и тогда, когда оно было открыто — две тысячи лет не оставили на нем никаких следов». Это короткое и точное доказательство, не требующее никаких дополнительных концепций, кроме сложения, умножения и деления. «Приведение к абсурду, которое так любил Евклид, — один из лучших инструментов математика, — добавил Харди. — Это гораздо более эффективный прием, чем любой шахматный гамбит. Шахматист может пожертвовать пешкой или даже более значимой фигурой, а математик ставит на кон игру».

Приведение к абсурду — это также один из любимых приемов комедиантов. Ирония используется для того, чтобы добиваться все более и более абсурдных выводов, тем самым все сильнее подчеркивая нелепость исходного предположения, — этот прием известен как сатира.

На самом деле я считаю, что сформулированное Евклидом доказательство бесконечности множества простых чисел комично само по себе. Для того чтобы найти новое простое число, Евклид должен сначала создать число М, которое не только до нелепости большое, но и представляет собой точную противоположность того, что он ищет, поскольку число М делится на каждое известное простое число. Затем, прибавив наименьшее число 1, Евклид переворачивает ситуацию с ног на голову. Мельчайший дополнительный элемент расшатывает почву под ногами огромного, мегаделимого монстра М и составляющих его простых чисел, беспощадно раскрывая их ограниченность. Подобно саркастической фразе, прозвучавшей в фильме Wayne’s World («Мир Уэйна»), Евклид говорит: «Эта группа простых чисел включает в себя все числа… нет!»

В математике много шутников.

Как только мы, люди, обретаем способность держать ручку в руках, мы начинаем машинально рисовать что-то на бумаге. Самый распространенный способ — в случайном порядке начертить на листе бумаги продольные и поперечные линии и заштриховывать образовавшиеся сегменты. Этот способ особенно хорош тем, что позволяет разместить рисунок так, чтобы заштрихованные сегменты имели общие стороны только с незаштрихованными, и наоборот. Подобный тип рисунка называется двухцветным, поскольку содержит всего два цвета. Чтобы доказать, почему мы можем выполнить такой рисунок в двух цветах, необходимо ввести еще один распространенный математический инструмент — доказательство методом индукции.

В философии и эмпирической науке индукция — это принцип, который гласит, что если событие наблюдалось много раз в прошлом, то можно предположить, что оно снова произойдет в будущем. Например, Солнце восходит каждое утро с незапамятных времен. Следовательно, было бы логично предположить, что оно взойдет и завтра. Мы не можем доказать, что Солнце завтра взойдет, но можем быть уверены в этом. Однако в математике мы не можем делать какие-то предположения исключительно на основании прошлого опыта.

Рассмотрим пять кругов, представленных на рисунке ниже. В первом случае на линии окружности есть только одна точка, во втором две, в третьем три, в четвертом четыре и в пятом пять. Давайте соединим точки прямыми линиями и посчитаем, сколько секторов получилось в каждом круге. Эти круги разделены на 1, 2, 4, 8 и 16 секторов. Закономерность поразительна: это ведь последовательность, в которой каждое число в два раза больше предыдущего! Можно ли сделать предположение, что если соединить шесть точек на окружности, то количество секторов составит 32?

Подсчитайте количество секторов в каждом круге и попробуйте догадаться, что будет дальше

Категорическое НЕТ! В случае шести точек будет 31 сектор, а по мере дальнейшего увеличения количества точек на линии окружности — 57, 99, 163, 256, 386… Закономерность здесь есть, но это не последовательность, в которой каждое число в два раза больше предыдущего[161]. Ни в коем случае не следует делать выводы на основании ограниченного количества наблюдений, какими бы многообещающими эти выводы ни казались.

В математике доказательство методом индукции — это способ выяснить, когда закономерность будет продолжаться до бесконечности. Если у нас есть последовательность таких утверждений:

1) — первое утверждение верно;

И

2) — если n-е утверждение верно, то утверждение n + 1 тоже верно;

то мы можем сделать вывод, что все эти утверждения верны.

Доказательство методом индукции аналогично падению костяшек домино. Если их поставить в ряд и n-я костяшка упадет, она толкнет костяшку n + 1, а значит, для того чтобы упали все костяшки, достаточно всего лишь опрокинуть первую костяшку.

Но вернемся к исходной задаче. Для того чтобы доказать, что машинальный рисунок может быть двухцветным, нам необходимо доказать, что:

1) — рисунок, состоящий из одного ряда, может быть двухцветным;

2) — если рисунок, состоящий из n рядов, может быть двухцветным, то и рисунок с количеством n + 1 рядов тоже будет двухцветным.

Доказать истинность первого утверждения очень просто: достаточно провести через всю страницу прямую линию и заштриховать область с одной стороны. А вот для того, чтобы доказать истинность второго утверждения, понадобится немного поразмышлять.

Начнем доказательство с рассмотрения n + 1 линий, как показано на схеме 1 ниже. (Очевидно, что для иллюстрации данного примера для числа n нужно выбрать какое-то значение, поэтому мы должны проследить за тем, чтобы наше доказательство было применимо к любому числу n.)

Если удалить одну линию, у нас получится рисунок с количеством линий n, показанный на схеме 2. Предположим, рисунок с количеством линий n можно сделать двухцветным, как на схеме 3. Теперь давайте восстановим линию, убранную на первом шаге (схема 4), и с одной ее стороны поменяем цвет на противоположный, другими словами — белые фрагменты сделаем заштрихованными, а заштрихованные — белыми. В результате каждый сектор над линией расположен рядом с сектором под линией, имеющим другой цвет. Следовательно, у нас пролучился двухцветный рисунок с количеством линий n + 1 (схема 5).

Доказательство теоремы о двухцветном рисунке методом индукции

Иными словами, мы продемонстрировали, что второе утверждение истинно. Процесс доказательства методом индукции завершен: все рисунки могут быть двухцветными. (Это доказательство распространяется только на рисунки, образованные посредством вычерчивания линий на квадратном листе. То же самое касается и любого фигурного рисунка с «завитушками», когда перо начинает и прекращает двигаться в одной и той же точке, но по мере перемещения может рисовать петли, спирали и пересечения любой сложности. Однако это утверждение требует более сложного доказательства.)

Труд Евклида «Начала» стал самым важным текстом в истории математики, и не только потому, что он раскрыл информацию о простых числах, треугольниках и т. д., но и благодаря тому, как именно это было сделано. Красота этого текста состоит в его строгости. Евклид весьма скрупулезен. Он ничего не упрощает, не дает никаких оценок и не делает заявлений, которые не может доказать. Если вы согласитесь с тем, что десять исходных предположений Евклида верны, то вы должны принять и истинность всех 465 теорем, сформулированных в книге. «Начала» — это образец применения аксиоматического метода, свидетельство силы дедуктивного мышления.

Говорят, что «Начала» Евклида переиздавались на протяжении большего периода и в большем количестве экземпляров, чем любая другая книга, за исключением Библии. Это очень уместное сравнение, поскольку более двух тысячелетий труд Евклида считался священным текстом, а аксиоматический метод принимался в качестве догмы. Однако в XVII веке появились первые признаки «нечестивости». Евклид полагался на аксиомы и определения, которые по самой своей сути не требовали доказательств и, разумеется, не содержали внутренних противоречий. Но, как мы видели в предыдущей главе, бесконечно малой величине, или величине, которая представляет собой одновременно и нечто, и ничто, свойственна именно такая внутренняя противоречивость. Ньютон и его современники использовали концепцию бесконечно малых величин, поскольку она позволила им доказать множество новых теорем, хотя им и приходилось закрывать глаза на противоречие с догматами Евклида, которые это за собой влекло.

Однако со временем математики поняли: для того чтобы исчисление было свободно от внутренних противоречий, оно должно опираться на более прочный фундамент. Было решено положить в основу исчисления не бесконечно малые величины, а нечто более надежное — концепцию предела. После упрощения исходных предположений и уточнения определений родился новый раздел математики — математический анализ. Сейчас этим термином обозначаются все области, связанные с исчислением, непрерывностью и бесконечными процессами. Одним из первых знаковых достижений математического анализа стала теорема о промежуточном значении, о которой шла речь в начале главы, гласящая, что непрерывная кривая покрывает все точки, расположенные между ее минимумом и максимумом.

Присущая XIX столетию склонность к научной строгости нашла свое отражение не только в математическом анализе, но и в других областях, в частности в евклидовой геометрии. Внимательно проанализировав «Начала», немецкий математик Мориц Паш сделал невероятное открытие: в рассуждениях Евклида есть прорехи, которые до сих пор никто не заметил, несмотря на то что «Начала» — наиболее изученный учебник по математике за всю историю. Евклид считал само собой разумеющимся, что, если три разные точки лежат на одной прямой, значит, одна из них находится между двумя другими. Однако если бы Евклид придерживался собственных стандартов, ему следовало бы сформулировать это утверждение в виде аксиомы. Евклид совершил неосмотрительную ошибку, позволив своим глазам воздействоват