На протяжении 6 лет, с 2013 г. по 2019 г., обзор неба DES задействовал 30 процентов времени на телескопе В. Бланко для наблюдений участка неба размером 5000 квадратных градусов – что соответствует примерно одной восьмой части неба – на протяжении 758 ночей, в результате чего в каталог были занесены сотни миллионов объектов. Эти новые результаты основаны на данных, полученных в течение первых трех лет – когда 224 миллиона галактик наблюдались на протяжении 345 ночей – которые позволили создать самые точные карты распределения галактик во Вселенной в относительно ранние эпохи ее развития.
Поскольку обзор неба DES наблюдал как близлежащие галактики, так и галактики, находящиеся на расстояниях в миллиарды световых лет, то эти карты позволяют сравнить между собой крупномасштабную структуру современной Вселенной с аналогичной структурой ранней Вселенной и оценить эволюционные изменения.
AstroNews. 29 мая 2021
Часть 11-11
Инструменты поиска темной материи
Содержание
(том – часть – глава)
11-11-1. Природа частиц тёмной материи
11-11-2. Физическое обнаружение гипотетических частиц тёмной материи
11-11-3. Попытки. Справка
11-11-4. ADMX
11-11-5. Пьер Сикиви
11-11-6. CDMS
11-11-7. В Канаде начали строить самый точный детектор темной материи
11-11-8. Проект XENON
11-11-9. Коллаборация DarkSide
Глава 11-11-1
Природа частиц тёмной материи
Тёмная материя определяется по гравитационному взаимодействию с обычным веществом и излучением. Гипотетические частицы холодной темной материи — медленные (нерелятивистские), они очень слабо взаимодействуют друг с другом и с обычной материей и не излучают фотонов. Они подразделяются на слабо взаимодействующие массивные частицы (WIMP — weakly interacting massive particles) и слабо взаимодействующие легкие частицы (WISP — weakly interacting slim particles).
WIMP — это в основном частицы из теории суперсимметрии (суперсимметричные партнеры обычных частиц Стандартной модели) с массами больше нескольких килоэлектронвольт, такие как фотино (суперпартнер фотона), гравитино (суперпартнер гипотетического гравитона), и т. д. Наилучшим кандидатом на звание частицы темной материи из числа WIMP ученые сейчас считают нейтралино — это квантовая «смесь» суперпартнеров Z-бозона, фотона и бозона Хиггса.
На данный момент частицы с необходимыми свойствами открыты не были, но многие расширения стандартной модели предсказывают существование таких частиц. Поиск вимпов включает попытки прямого обнаружения высокочувствительными детекторами, а также попытки их создания на ускорителях частиц. Вимпы обычно рассматривают как наиболее вероятные кандидаты в составляющие тёмной материи.
Основной кандидат из группы WISP — аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Эта очень легкая (миллионные доли электронвольта) стабильная и электрически нейтральная частица способна в очень сильных магнитных полях превращаться в фотон-фотонную пару, что дает намек на то, как можно попытаться ее обнаружить в эксперименте.
Аксионы обладают теоретическим преимуществом, поскольку их существование может решить одну из проблем квантовой хромодинамики, но пока эти частицы обнаружены не были.
Не исключено, что темная материя — это MACHO или массивные компактные объекты гало являются крупными плотными объектами, такими как чёрные дыры, нейтронные звёзды, белые карлики, очень слабые звёзды или несветящиеся объекты типа планет. Поиск таких объектов заключается в использовании метода гравитационного линзирования для обнаружения влияния таких объектов на изображения галактик фона. Большинство экспертов считает, что ограничения, полученные из результатов поиска объектов, исключают MACHO из числа кандидатов в составляющие тёмную материю объекты.
Глава 11-11-2
Физическое обнаружение гипотетических частиц тёмной материи
Экспериментальное обнаружение частиц тёмной материи должно основываться, во-первых, на том, что они обладают массой, гравитационно взаимодействующей с другими массами, во-вторых, что эта масса должна быть очень велика. Однако кроме этого о тёмной материи ничего не известно. Основная трудность при поиске частиц тёмной материи заключается в том, что они не участвуют в электромагнитном взаимодействии, то есть невидимы и имеют небарионную природу.
Имеются два варианта поиска: прямой и косвенный.
При прямом экспериментальном поиске ТМ с помощью наземной аппаратуры изучаются следствия взаимодействия этих частиц с электронами или атомными ядрами в чувствительном объёме низкофонового ядерно-физического детектора. При рассеянии частицы тёмной материи, входящей в состав галактического гало, на частице обычного вещества (электроне или нуклоне) последняя получает определённую кинетическую энергию и может быть зарегистрирована обычными методами. Проблема заключается в чрезвычайной малости сечения взаимодействия частиц ТМ с обычными частицами. Дополнительная экспериментальная сигнатура, позволяющая подавить фон, но вносящая определённую модельную зависимость, основана на ожидаемом периодическом изменении скорости Земли (и детектора вместе с ней) относительно гало тёмной материи ввиду орбитального движения вокруг Солнца, что должно приводить к вариациям сигнала с годичной периодичностью и максимумом в начале июня. Вариант прямого поиска лёгких частиц ТМ (в частности, аксионов) заключается в детектировании их распада на фотоны в магнитном поле в высокодобротной резонансной полости (так называемом галоскопе).
Подобные эксперименты требуют высокой точности и исключения помех от других источников сигнала, поэтому детекторы, как правило, располагаются под землёй.
Косвенные методы детектирования основаны на попытках обнаружения потоков вторичных частиц (нейтрино, фотонов и т. п.), которые возникают, например, благодаря аннигиляции солнечной или галактической тёмной материи.
Глава 11-11-3
Попытки. Справка
В течение последних тридцати лет физики искали частицы темной материи огромным числом независимых способов.
Во-первых, поисками занимаются огромные детекторы на благородных газах, которые просматривают сотни килограмм вещества в надежде заметить столкновение вимпов с одним из его атомов. В частности, к таким детекторам относятся установки XENON, CDMS, PandaX и DarkSide.
Во-вторых, некоторые ученые предлагают немного видоизменить этот подход, заменив сжиженный газ массивом сверхпроводящих нанопроводов. Оба этих подхода отталкиваются от успеха нейтринных детекторов, имеющих схожую конструкцию.
В-третьих, на «темные» частицы может указывать недостаток обычных частиц, которые рождаются в столкновениях высокоэнергетических протонов (например, на Большом адронном коллайдере).
В-четвертых, в последнее время разрабатывают детекторы, которые могут «почувствовать» легкие частицы темной материи — например, детекторы ADMX и ABRACADABRA. Наконец, некоторые ученые предлагают искать частицы темной материи по косвенным признакам — по разогреву нейтронных звезд или аннигиляции. Как бы то ни было, ни один из этих способов не дал положительного результата.
В ноябре 2017 года физики из Университета Брауна предложили искать легкие частицы темной материи с помощью квантового испарения жидкого гелия. В каком-то смысле этот подход аналогичен «туманной», «снежковой» и пузырьковой камере, которые основаны на фазовых переходах метастабильного вещества.
Глава 11-11-4
ADMX
Эксперимент ADMX (Axion Dark Matter Experiment) располагается в Центре Экспериментальной Ядерной Физики и Астрофизики (CENPA) в университете штата Вашингтон. Главная задача его – поиск холодной темной материи по методу, использующему большой свехпроводящий соленоид. Магнитное поле, создаваемое им, однородное и составляет 7,6 Тл. Согласно теории, аксионы в таких условиях должны превращаться в низкоэнергетичные фотоны.
Аксионный галоскоп изобрел Пьер Сикиви в 1983 году. После того, как эксперименты в Университете Флориды продемонстрировали практичность аксионного галоскопа, ADMX был построен в Ливерморской национальной лаборатории Лоуренса в 1995 году. В 2010 году ADMX переехал в Центр экспериментальной физики и астрофизики (CENPA) Вашингтонского университета.Под руководством доктора Лесли Розенберга ADMX проходит модернизацию, которая позволит ему быть чувствительным к широкому диапазону вероятных аксионных масс и связей темной материи.
Хотя темную материю нельзя увидеть напрямую, ее гравитационное взаимодействие с привычной материей оставляет доказательства ее существования. Сегодняшняя Вселенная не выглядела бы так же без темной материи.Природа темной материи остается одной из величайших загадок физики. Возможно темная материя состоит из аксионов. Аксион — это нейтральная частица, которая чрезвычайно слабо взаимодействует и может производиться в нужном количестве, чтобы составить темную материю. Если темная материя, составляющая большую часть всей материи в нашей Вселенной, является аксионами, ADMX — один из экспериментов, способных ее обнаружить.
Глава 11-11-5
Пьер Сикиви
Пьер Сикиви (родился 29 октября 1949 г.) - американский физик-теоретик и в настоящее время заслуженный профессор физики Университета Флориды в Гейнсвилле, Флорида.