Краткая история астрономии. Том 11. Темная материя — страница 54 из 65

бъяснить неожиданно большие массы объединяющихся черных дыр, факт слияния которых был обнаружен в прошлом году.




Рис. Черные дыры в ранней Вселенной

               В 2005 г. команда астрономов НАСА при помощи космического телескопа «Спитцер» зафиксировала фоновое инфракрасное излучение в одной из частей неба, демонстрирующее неоднородности. Исследователи тогда сделали вывод о том, что этот свет относится к источникам ранней Вселенной, существовавшим более чем 13 миллиардов лет назад.

               В 2013 г. в другом исследовании астрономы обнаружили при помощи рентгеновской обсерватории НАСА «Чандра» аналогичное фоновое излучение, но уже в рентгеновской области спектра. Первые звезды излучали в основном в оптическом и УФ-диапазонах, к тому же при расширении Вселенной свет, излучаемый ими, «растягивался», переходя в ИК-область спектра, поэтому первые звезды не могут отвечать за рентгеновский фон, заключили авторы работы. Единственными известными науке кандидатами на роль источников, излучающих в широком диапазоне длин волн, оставались черные дыры.

               В своем исследовании Кашлински предполагает, что темная материя на самом деле состоит из черных дыр, подобных тем, что были зарегистрированы недавно при помощи обсерватории LIGO. Согласно его теории в горячей ранней Вселенной такая темная материя дала «зародыши», на которых происходила конденсация газа с образованием звезд, излучающих свет в оптическом и УФ-диапазонах. Кроме того, конденсирующийся газ падал на черные дыры и начинал светиться в рентгене – что объясняет появление наблюдаемого рентгеновского фона. Такой сценарий объясняет соответствие между наблюдаемыми картинами неоднородностей в картах рентгеновского и ИК фона.


Astronews, 25 мая 2016

https://www.astronews.ru/cgi-bin/mng.cgi?page=news&news=8547


обсерватория LIGO

Александр Кашлински из Центра космических полетов Годдарда НАСА, США.


Глава 11-18-2
Гравитационные волны укажут на существование первичных черных дыр


Декабрь 2017


               Черные дыры не могли образоваться по стандартному сценарию (в результате коллапса материи) раньше, чем через сто миллионов лет после Большого взрыва (красное смещение z = 40), утверждают двое физиков из Гарварда. Поэтому если мы зарегистрируем гравитационные волны от слияния двух черных дыр с бóльшим красным смещением, это будет практически однозначным свидетельством в пользу существования первичных черных дыр. Статья опубликована в Physical Review Letters.


               Согласно стандартному сценарию, черная дыра образуется в результате гравитационного коллапса крупной звезды. По общепринятой сейчас модели развития Вселенной звезды начали появляться только спустя 150-500 миллионов лет после Большого взрыва (эпоха реионизации), то есть до момента реионизации черные дыры не должны были возникать. С другой стороны, в ранней Вселенной вещество было очень горячим и неоднородным, и черные дыры могли появляться просто из-за колебаний его плотности. Такие черные дыры называются первичными. Отдаленно возникновение первичных черных дыр напоминает кипение абсолютно чистой воды, в которой пузырьки могут возникать только из-за колебаний плотности жидкости.

               Но наблюдать черные дыры непосредственно очень сложно, поскольку свет не может покинуть их окрестности. Поэтому в основном их ищут, оценивая гравитационное влияние  на находящиеся рядом тела. Для первичных черных дыр этот способ, очевидно, работать не будет, но есть и другие способы заметить черные дыры. Например, система, состоящая из двух черных дыр, со временем коллапсирует в одну более массивную дыру, излучая при этом гравитационные волны. По этим волнам можно примерно установить красное смещение исходной системы (то есть момент, в который произошло слияние) и массу дыр. На данный момент коллаборация LIGO зарегистрировала пять событий, отвечающих слиянию двух черных дыр, а за разработку детектора LIGO и наблюдение гравитационных волн Райнеру Вайссу, Барри Бэришу и Кипу Торну присудили Нобелевскую премию.

               Физики Саввас Кушиаппас (Savvas M Koushiappas) и Абрахам Лёб (Abraham Loeb) оценили, насколько часто мы должны регистрировать слияния черных дыр в зависимости от их красного смещения. Для этого ученые использовали стандартную космологическую модель и считали, что звезды и черные дыры образуются из вещества, пойманного в гало темной материи. При этом масса гало должна превышать некоторый предел, чтобы холодный молекулярный водород начал сжиматься и превращаться в звезды.

               В результате оказалось, что чем больше красное смещение, тем реже образуются черные дыры (по стандартному сценарию), и тем реже мы должны регистрировать их слияния, а начиная со смещения z = 40 регистраций быть вообще не должно. В более древние времена вещество не могло коллапсировать в дыры, и сливаться было просто нечему. С другой стороны, в те времена могли образоваться первичные черные дыры, и если мы поймаем волны с бóльшим красным смещением, это будет аргументом в пользу их существования.


nplus1.ru, 4 декабря 2017, Дмитрий Трунин

https://nplus1.ru/news/2017/12/04/black-waves

Журнал Physical Review Letters. 2017

Саввас Кушиаппас (Savvas M Koushiappas) и Абрахам Лёб (Abraham Loeb)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.221104


Глава 11-18-3
Темная материя может состоять из первичных черных дыр


Апрель 2018


Одна из версий происхождения темной материи связывает ее с первичными черными дырами, возникшими в ранней Вселенной в результате космической инфляции или прямого коллапса первичного газа. ОпубликовановжурналеMonthly Notices of the Royal Astronomical Society.


               Астрономы во главе с Киронгом Чжу (Qirong Zhu) из Гарвард-Смитсоновского астрофизического центра, США, попытались проверить эту гипотезу, используя в качестве критерия проверки распределение плотности в гало галактик. Согласно команде Чжу, в том случае если гало галактик состоят из первичных черных дыр, распределение плотности в них будет отличаться от распределения плотности в гало галактик, состоящих из экзотических частиц.

               Исследователи считают, что в качестве объектов таких наблюдений следует выбирать тусклые карликовые галактик, поскольку для них эти эффекты изменения распределения плотности будут выражены в наибольшей степени. С помощью компьютерного моделирования авторы проверили, могут ли карликовые галактики помочь обнаружить присутствие первичных черных дыр – и пришли к утвердительному выводу. Согласно авторам взаимодействия между звездами и первичными черными дырами гало могут изменить распределение звезд в них.


Astronews, 21 апреля 2018

Monthly Notices of the Royal Astronomical Society

Киронг Чжу (Qirong Zhu) из Гарвард-Смитсоновского астрофизического центра, США



Глава 11-18-4
Тусклые карликовые галактики ограничили массу первичных черных дыр в темной материи


Апрель 2018


Группа астрофизиков, включая ученого из России, смоделировала эволюцию ультратусклых карликовых галактик при условии, что окружающая их темная материя состоит из первичных черных дыр. Это позволило ограничить массу таких черных дыр диапазоном от 2 до 14 масс Солнца и подтвердить, что распределение темной материи в этом случае не противоречит наблюдаемым кривым вращения галактик. Статья опубликована в Monthly Notices of the Royal Astronomical Society, препринт работы выложен на сайте arXiv.org.


               Экспериментальных доказательств существования темной материи  до сих пор не найдено. Одним из самых интересных кандидатов на роль темной материи служат первичные черные дыры (primordial black holes), возникшие на ранних этапах жизни Вселенной, когда никаких звезд еще не было. Различные экспериментальные и теоретические исследования показали, что вклад в темную материю могут давать только черные дыры определенной массы, однако первичные черные дыры до сих пор не исключили.

               Первичные черные дыры выгодно отличаются от остальных кандидатов на роль темной материи тем, что позволяют разрешить проблему каспо (cuspy halo problem). Она состоит в том, что компьютерные модели эволюции галактик обещают резкий рост плотности темной материи вблизи ее центра (острый пик, cusp), тогда как наблюдаемые в реальности кривые вращения указывают скорее на постоянное распределение (то есть ядро, core). Модели, где темная материя состоит из первичных черных дыр, таких пиков не дает. Кроме того, движение звезд внутри галактики, окруженной первичными черными дырами, немного отличается от движения звезд в других моделях темной материи. Считается, что наиболее заметны эти отличия будут в ультратусклых карликовых галактиках, имеющих светимость порядка тысячи светимостей Солнца.

               Цижун Чжу (Qirong Zhu) из Гарвардского университета, Евгений Васильев из ФИАНа, а также Юэсин Ли (Yuexing Li) и Ипэн Цзин (Yipeng Jing) из университета Шанхая численно смоделировали эволюцию таких ультратусклых галактик в предположении, что окружающая их темная материя состоит из первичных черных дыр, и определили допустимые значения масс черных дыр.

               Оказалось, что изначально острый пик распределения массы темной материи сравнительно быстро (в течение 0,1 миллиарда лет) сглаживается из-за взаимодействия черных дыр, и около центра галактики плотность темной материи выходит на постоянный уровень. Конечная плотность темной материи в центральном ядре составляет около одной-двух масс солнца на кубический парсек, в то время как плотность обычного барионного вещества примерно на два порядка меньше. При этом суммарной массы темной материи едва хватает, чтобы ультратусклая галактика начала формироваться. Из расчетов следует, что масса первичных черных дыр, составляющих темную материю лежит в диапазоне от 2 до 14 масс Солнца, что совпадает с другими теоретическими оценками.