Глава 11-19-2
Стандартная космологическая модель (ΛCDM)
ΛCDM (Lambda-Cold Dark Matter, читается: «лямбда-си-ди-эм») — современная стандартная космологическая модель, в которой пространственно-плоская Вселенная заполнена, помимо обычной барионной материи, тёмной энергией (описываемой космологической постоянной Λ в уравнениях Эйнштейна) и холодной тёмной материей (англ. Cold Dark Matter). Согласно этой модели, для согласования с наблюдениями (в частности, космической обсерватории «Планк») возраст Вселенной должен быть принят равным 13,799 ± 0,021 миллиарда лет.
Большинство современных космологических моделей основано на космологическом принципе, который утверждает, что наше местоположение во Вселенной никак особенно не выделяется и что на достаточно большом масштабе Вселенная выглядит одинаково во всех направлениях (изотропна) и из каждого места (однородность). Этот принцип представляет собой не безусловное требование-постулат, а скорее презумпцию — то есть считается верным, пока не доказано обратное.
С конца 1980-х — начала 1990-х годов большинство космологов предпочитают теорию существования холодной тёмной материи для описания того, каким образом Вселенная из начального относительно однородного состояния на раннем этапе развития (как показывает распределение космического микроволнового излучения) перешла в состояние современного клочковатого распределения галактик и скоплений галактик.
Предполагается, что общая теория относительности является правильной теорией гравитации на космологических масштабах. И объясняет расширение Вселенной, которое хорошо подтверждается космологическим красным смещением спектров удалённых галактик и квазаров.
Собственно ΛCDM возникла в конце 1990-х годов и включает в себя космологическую инфляцию на ранних стадиях Большого взрыва для объяснения пространственной плоскостности Вселенной и начального спектра возмущений.
Глава 11-19-3
Стандартная космологическая модель (ΛCDM)
История возникновения ΛCDM
Открытие космического микроволнового фона в 1965 году подтвердило ключевое предсказание космологии Большого Взрыва. С этого момента было принято считать, что Вселенная расширяется с течением времени, а раннее её состояние было плотным и горячим.
Скорость расширения зависит от содержания и типа вещества и энергии во Вселенной и, в частности, от того, является ли полная плотность выше или ниже так называемой критической плотности. В 1970-х годах основное внимание космологов привлекала чисто барионная модель, но в этом подходе были серьёзные проблемы объяснения образования галактик, учитывая очень небольшую анизотропию реликтового излучения, на которую уже тогда были получены серьёзные оценки сверху. В начале 1980-х годов стало ясно, что эта проблема может быть решена, если предположить, что холодная тёмная материя доминирует над барионной.
Различные модели предлагают разные соотношения обычных и тёмных энергий и масс. В 1980-х годах большинство исследований фокусировалось на модели холодной тёмной материи с критической плотностью при соотношении около 95 % тёмной материи и 5 % барионов: эти работы успешно объясняли формирование галактик и скоплений галактик, однако в 1990-х оказалось, что результаты по спектру крупномасштабного распределения галактик в сочетании с измеренной анизотропией реликтового излучения противоречат такой модели.
Модель ΛCDM стала стандартом вскоре после открытия ускорения расширения Вселенной в 1998 году, так как упомянутые противоречия были просто и естественно в ней решены. Современные наблюдения, в частности измерение постоянной Хаббла, показывают отклонения от ΛCDM модели, использующей FLRW метрику.
Комментарий
Метрика Фридмана–Леметра–Робертсона–Уокера (FLRW) — это метрика, основанная на точном решении уравнений поля Эйнштейна ОТО.Метрика описывает однородную, изотропную, расширяющуюся (или, в противном случае, сжимающуюся) вселенную, которая является путе-связной, но не обязательно односвязной.Общая форма метрики следует из геометрических свойств однородности и изотропии;уравнения поля Эйнштейна нужны только для вывода масштабного фактора вселенной как функции времени.В зависимости от географических или исторических предпочтений, набор из четырех ученых — Александр Фридман, Жорж Лемэтр, Говард П. Робертсон и Артур Джеффри Уокер — по-разному группируются как Фридман, Фридман–Робертсон–Уокер (FRW), Робертсон–Уокер (RW) или Фридман–Лемэтр (FL).Модель FLRW была разработана независимо названными авторами в 1920-х и 1930-х годах. Ее называют Стандартной моделью космологии, как и более развитую модель Лямбда-CDM.
Глава 11-19-4
Ускоренное время избавило физиков от темной материи
Май 2015
Пьер Магейн (Pierre Magain) и Клементин Ауре (Clémentine Hauret) из Льежского университета (Бельгия) представили космологическую модель, в рамках которой скорость течения времени после Большого Взрыва могла существенно изменяться в зависимости от энтропии. Если время в нашей Вселенной реально имеет такую природу, астрономические наблюдения сверхновых типа Ia могут быть объяснены без необходимости в темной материи. Работа направлена в Monthly Notices of the Royal Astronomical Society, опубликована в arXiv.org.
В рамках работы ученые предложили два понятия времени - глобальное (космологическое) и локальное (координатное). Глобальное время в их представлении - это некоторый параметр t, которым занумерованы трехмерные «срезы» четырехмерного пространственно-временного континуума. Вселенная в такой модели берется на достаточно больших масштабах и считается усредненной и однородной. Эти срезы есть состояния пространства вместе со всей материей в ней в каждый момент времени. Локальное время - это время, которое может измерить наблюдатель с помощью некоторых часов в фиксированной системе координат в окрестности некоторой точки пространства.
Традиционно эти два параметра (в отсутствии материи, разумеется) совпадают. Однако Магейн и Ауре решили, что, вообще говоря, два времени совпадать не обязаны. Так как глобальное время довольно сложный для работы параметр, физики предложили взять в качестве меры этой величины энтропию. Соответственно, локальное время меняется как функция энтропии в окрестности выбранной за начало координат точке пространства
В рамках теории относительности время для часов движущихся относительно неподвижного наблюдателя течет медленнее, чем для часов этого наблюдателя, однако предполагается, что время тех часов, что находятся в покое течет с постоянной (без учета действия на них гравитации) скоростью на протяжении всего существования Вселенной. Магейн и Ауре идут на один шаг дальше этой точки зрения и выдвигают гипотезу, согласно которой скорость течения времени неподвижных часов зависит от динамического состояния Вселенной.
Разбирая вопрос о скорости течения космологического времени, которое в их модели отличается от координатного, авторы приходят к выводу, что по мере роста энтропии Вселенной космологическое время замедляется. В такой модели далекие объекты, движущиеся с постоянной «космологической» скоростью от наблюдателя кажутся ему ускоряющимися.
Это, в свою очередь, означает, что в их модели наблюдаемое по яркости вспышек сверхновых типа Ia ускоренное расширение Вселенной на протяжении последних 6 миллиардов может быть вызвано не космологической константой (темной энергией), а именно замедлением космологического времени. Для нас, как локальных наблюдателей, оно создает впечатление мнимого ускорения расширения Вселенной, практически неотличимое от реального.
Энтропия черной дыры пропорциональна площади её горизонта, деленной на квадрат т.н. гравитационной длины Планка (10–33см). Из-за очень малой величины последней для нормальной черной дыры значение энтропии получается чрезвычайно большим, на много порядков больше, чем от любого другого источника. В то же время совершенно не ясно, из чего конкретно она могла бы складывается, поскольку никаких явных компонентов, которые своим хаотичным движением могли бы способствовать беспредельному увеличению энтропии в черной дыре не известно. С учетом того, что точная численность и масса всех ЧД Вселенной на сегодня также неизвестна, авторы специально оговаривают, что источники энтропии влияют на скорость течения времени только если они связаны с данным районом причинно-следственные связями. Благодаря этому бельгийцы исключают из общего бюджета энтропии во Вселенной черные дыры – все, что находится в пределах горизонта событий черных дыр не имеет прямых связей с остальной пространством-временем.
Базируясь на оценке уровня роста энтропии за время после Большого взрыва, исследователи оценивают давность этого события в 15,0±0,5 миллиарда лет (для равномерного течения времени), что значительно древнее нынешних оценок (13,7-13,8 миллиарда лет). Таким образом в их сценарии значительно проще выглядит вопрос о том, как могли возникнуть те отдаленные галактики, возраст которых по красному смещению оценивается более чем в 13 миллиардов лет. Последние открытия такого рода означают, что в рамках Стандартной модели на их формирование (включая предшествующую эпоху реионизации) отводит довольно мало времени. Поэтому для объяснения формирования галактик, среди прочего, используют темную материю.
Авторы полагают, что их гипотезу нельзя проверить с помощью анализа красного смещения. Если их модель верна, то все существующие физические законы должны быть функцией изменяющегося по скорости космологического времени. А значит фотоны от отдаленных источников будут испытывать такое же красное смещение, как и при нынешней стандартной космологической модели Лямбда-CDM.