Краткая история почти всего на свете — страница 31 из 105

Физики славятся пренебрежительным отношением к ученым других направлений. Великий австрийский физик Вольфганг Паули, узнав, что жена ушла от него к химику, был потрясен. «Я бы еще понял, если бы она вышла за тореадора, – удивленно заметил он приятелю. – Но за химика…»

Резерфорд, видимо, разделял эти чувства. «Вся наука делится на физику и коллекционирование марок», – заметил он однажды. С тех пор это высказывание повторялось множество раз. Поэтому присуждение ему в 1908 году Нобелевской премии в области химии, а не физики, может вызвать как минимум улыбку.

Резерфорду повезло – повезло, что он был гением, а еще больше, что жил в то время, когда физика и химия были такими увлекательными и так хорошо сочетались (несмотря на его собственные сантименты). Никогда больше они не будут так удачно выступать единым фронтом.

При всех своих успехах Резерфорд не обладал особо блестящим интеллектом, а с математикой у него был просто кошмар. Часто во время лекций он безнадежно путался в собственных уравнениях, так что бросал все на полпути и предлагал студентам закончить самим. По словам его давнего коллеги Джеймса Чэдвика, открывшего нейтрон, Резерфорд не был особенно силен и как экспериментатор. Он просто брал упорством и широтой кругозора. Блеск ума ему заменяли проницательность и своего рода дерзость. Его ум, по словам одного из биографов, «постоянно стремился к переднему краю, каким он ему представлялся, а видел он куда дальше других». Сталкиваясь с неподатливой проблемой, он был готов работать упорнее и дольше большинства и был более восприимчив к неортодоксальным объяснениям. Его самое большое открытие пришло к нему, потому что он был готов утомительно долго просиживать у экрана, подсчитывая сцинтилляции альфа-частиц, – труд, который обычно сваливали на кого-нибудь другого. Он одним из первых – возможно, самым первым – разглядел, что заключенная в атоме энергия, если ее направить по определенному руслу, может привести к созданию бомбы, достаточно мощной, чтобы «сей старый мир исчез в дыму».

Он был огромного роста и обладал зычным голосом, который пугал особо робких. Однажды, услышав, что Резерфорд собирается выступить в радиопередаче, которая должна была транслироваться через Атлантику, один из его коллег сухо спросил: «А зачем ему радио?» Резерфорд также обладал колоссальной, правда добродушной, самоуверенностью. Когда кто-то заметил, что он всегда оказывается на гребне волны, Резерфорд ответил: «Но волну-то в конечном счете поднимаю я, не так ли?» Ч. П. Сноу вспоминал, что как-то у портного в Кембридже он нечаянно услышал реплику Резерфорда: «Каждый день я прибавляю в весе. И в уме».

Но вес и слава в 1895 году, когда он появился в Кавендишской лаборатории[154], были еще далеко впереди. То был особенно богатый научными событиями период. В год приезда Резерфорда в Кембридж в Германии, в Вюрцбургском университете, Вильгельм Рентген открыл рентгеновские лучи; в следующем году Анри Беккерель открыл радиоактивность. А для самой Кавендишской лаборатории наступало время величия. В 1897 году Дж. Дж. Томсон с коллегами откроют там электрон, в 1911 году Ч. Т. Р. Уилсон изобретет первый детектор заряженных частиц (об этом ниже), а в 1932 году Джеймс Чэдвик все там же откроет нейтрон. Еще позднее, в 1953 году, Джеймс Уотсон и Фрэнсис Крик создадут в Кавендишской лаборатории структурную модель молекулы ДНК.

Сначала Резерфорд работал с радиоволнами, и небезуспешно – ему удалось передать четкий сигнал на расстояние более мили; очень неплохое достижение для того времени, но он оставил эту тему, когда один из старших коллег убедил его, что у радио нет большого будущего. Да и вообще Резерфорд не очень преуспевал в Кавендишской лаборатории и через три года, не видя перспектив, занял должность в Макгилльском университете в Монреале, откуда началось его долгое и неуклонное восхождение к вершинам славы. К моменту получения Нобелевской премии (согласно официальной формулировке, за «исследования в области расщепления элементов и химии радиоактивных веществ») он уже работал в Манчестерском университете и фактически там и проделал самые важные работы по определению строения и природы атома.

К началу XX века было уже известно, что атомы состоят из частей, – это было установлено в результате открытия Томсоном электрона. Но тогда еще не знали, из какого количества частей состоит атом, как они крепятся друг к другу и какую форму принимают. Некоторые физики думали, что атомы имеют форму куба, потому что куб можно сложить таким образом, чтобы не оставалось пустого пространства. Правда, более общепринятым было представление об атоме, похожем на булочку с изюмом: что это плотный, положительно заряженный предмет, напичканный, как изюмом, отрицательно заряженными электронами.

В 1910 году Резерфорд (при участии своего студента Ханса Гейгера, который позднее изобрел детектор радиоактивности, носящий его имя) обстрелял листок золотой фольги ионизированными атомами гелия, иначе альфа-частицами[155]. К удивлению Резерфорда, некоторые частицы отскакивали назад. Словно, по его словам, он выстрелил 15-дюймовым снарядом в лист бумаги, а снаряд отскочил ему на колени. Возможность такого явления было невозможно предположить. После долгих размышлений он нашел единственно возможное объяснение: частицы отскакивали, сталкиваясь с чем-то очень малым и плотным в сердцевине атома, тогда как другие частицы беспрепятственно пролетали сквозь лист. Атом, догадался Резерфорд, это в основном пустое пространство с очень плотным ядром в центре. Это было весьма обнадеживающее открытие, но оно сразу ставило одну проблему. По всем законам традиционной физики атомы в таком случае не должны были существовать.

Прервемся на минутку и рассмотрим строение атома, как оно представляется теперь. Каждый атом состоит из трех видов элементарных частиц: протонов, несущих положительный электрический заряд, отрицательно заряженных электронов и нейтронов, которые не несут никакого заряда. Протоны и нейтроны плотно упакованы в ядро, а электроны обращаются вокруг него. Химическую индивидуальность дает атомам количество протонов. Атом с одним прото ном – это атом водорода, с двумя – атом гелия, с тремя – лития и так далее по таблице. Добавляя протон, вы каждый раз получаете новый элемент. (Ввиду того что число протонов в атоме всегда уравновешивается равным числом электронов, иногда можно прочесть, что элемент определяется количеством электронов, что, в сущности, одно и то же. Как мне объяснили, протоны придают атому индивидуальность, а электроны определяют его личность.)

Нейтроны не влияют на идентичность атома, но увеличивают его массу. Число нейтронов обычно примерно такое же, как и протонов, хотя может несколько отличаться в ту или иную сторону. Добавьте или убавьте нейтрон-другой, и вы получите изотоп. Обозначения, которые вы встречаете в связи с датированием пород в археологии, относятся к изотопам, например, термин «углерод-14» означает атом углерода с шестью протонами и восьмью нейтронами (в сумме получается четырнадцать).

Нейтроны и протоны занимают ядро атома. Оно совсем крошечное – всего одна миллионная миллиардной части полного объема атома, – но фантастически плотное, поскольку содержит практически всю массу атома. Как писал Кроппер, если атом увеличить до размеров собора, ядро будет всего лишь размером с муху, но эта муха будет во много тысяч раз тяжелее собора. Именно эта обширность, эта невообразимая, потрясающая вместительность атома заставили Резерфорда в 1910 году чесать в затылке.

По сей день у многих вызывает удивление мысль о том, что атомы в основном представляют собой пустое пространство, и твердость окружающих нас тел – не более чем иллюзия. Когда в реальном мире друг с другом сближаются два тела – чаще всего в качестве иллюстрации берут бильярдные шары, – они на самом деле не ударяются друг о друга. «Правильнее сказать, – поясняет Тимоти Феррис[156], – что отрицательные заряды обоих шаров взаимно отталкиваются… Не будь у них электрических зарядов, они могли бы, подобно галактикам, беспрепятственно пройти сквозь друг друга». Сидя на стуле, вы на самом деле не сидите на нем, а висите над ним на высоте одного ангстрема (стомиллионная доля сантиметра), ваши электроны и электроны стула отчаянно противятся любой более тесной близости.

Рисунок атома, как его представляют почти все, состоит из одного-двух электронов, которые обращаются вокруг ядра наподобие планет, вращающихся вокруг Солнца. Это изображение было создано в 1904 году японским физиком Хантаро Нагаока на основе не более чем догадки. Оно абсолютно неверно, но все равно надолго сохранилось. Как не раз отмечал Айзек Азимов[157], оно вдохновляло поколения писателей-фантастов на создание произведений о мирах внутри миров, в которых атомы становятся маленькими обитаемыми солнечными системами или наша Солнечная система оказывается всего лишь пылинкой в значительно более крупной системе. Даже сегодня Европейский центр ядерных исследований (ЦЕРН) использует созданное Нагаокой изображение в качестве эмблемы своего сайта в Интернете[158]. На самом деле, как вскоре поняли физики, электроны совсем не похожи на вращающиеся по орбитам планеты, а больше напоминают лопасти крутящегося вентилятора, умудряясь одновременно заполнять каждый кусочек пространства на своих орбитах (с одной существенной разницей, что, если лопасти вентилятора только кажутся находящимися одновременно везде, электроны действительно находятся сразу всюду).

* * *

Стоит ли говорить, что очень немногое из этого было понятно в 1910 году или даже годы спустя. Открытие Резерфорда поставило ряд крупных неотложных проблем. Не последняя среди них состояла в том, что электроны не могут обращаться вокруг ядра, не падая на него. По законам традиционной электродинамики электрон при вращении должен очень быстро – практически мгновенно израсходовать свою энергию и по спирали упасть на ядро с гибельными последствиями для них обоих. Была также проблема: каким образом протоны с их положительными зарядами могут быть связаны друг с другом внутри ядра, не разорвав на куски самих себя и весь атом. Становилось ясно, что все происходящее там, в ми