Вышедший 25 апреля 1953 года номер журнала Nature содержал заметку Уотсона и Крика на 900 слов, озаглавленную «Строение дезоксирибозной нуклеиновой кислоты». Она сопровождалась отдельными статьями Уилкинса и Франклин. Это было богатое событиями время – Эдмунд Хиллари[389] вот-вот должен был взобраться на вершину Эвереста, а Елизавете II вскоре предстояла коронация, так что открытие тайны жизни в основном прошло незамеченным. О нем кратко сообщила газета The News Chronicle, а другие издания не обратили внимания.
Розалинд Франклин не получила Нобелевской премии. Она умерла от рака в 1958 году, за четыре года до присуждения награды. Нобелевские премии посмертно не присуждаются. Рак почти наверняка был следствием постоянного рентгеновского облучения в ходе ее работы. Его можно было избежать. В удостоившейся многих похвал ее биографии Бренда Мэддокс отмечает, что Франклин редко надевала свинцовый фартук и неосторожно становилась под лучи. Освальд Эвери тоже так и не получил Нобелевской премии и в значительной мере остался незамеченным последующими поколениями, но по крайней мере получил удовлетворение от того, что дожил до подтверждения своего открытия. Умер он в 1955 году.
В действительности открытие Уотсона и Крика не находило независимых подтверждений до 1980-х годов. В одной из своих книг Крик писал: «Потребовалось больше двадцати пяти лет, чтобы наша модель ДНК из довольно правдоподобной стала весьма вероятной… а потом фактически совершенно корректной».
Но, даже несмотря на постепенность признания, после выяснения строения ДНК развитие генетики пошло быстрыми темпами, и к 1968 году журнал Science мог опубликовать статью, озаглавленную «Это была молекулярная биология…», в которой высказывалось предположение – это покажется невероятным, но это так, – что работа в области генетики почти завершена.
Разумеется, в действительности она только начиналась. Даже теперь нам едва понятно очень многое из того, что относится к ДНК, не в последнюю очередь то, почему значительная ее часть, как представляется, остается не у дел. Девяносто семь процентов вашей ДНК не содержат ничего, кроме длинных последовательностей бессмысленного «мусора» или «некодирующих фрагментов», как предпочитают выражаться биохимики. Только в отдельных местах каждой нити то тут, то там находятся участки, управляющие жизненными функциями и организующие их. Это и есть те удивительные и долго ускользавшие от обнаружения гены.
Гены – это не больше (и не меньше), чем инструкции по синтезу белков. И эту функцию они осуществляют с неизменной тупой точностью. В этом смысле они довольно похожи на клавиши фортепьяно: каждая издает одну ноту, и больше ничего, что, разумеется, немного монотонно. Но комбинируйте гены, как вы комбинируете фортепьянные клавиши, и тогда вы можете творить бесконечное разнообразие аккордов и мелодий. Соедините все эти гены и получите (продолжим сравнение) великую симфонию жизни, известную как геном человека.
Более привычно уподоблять геном своего рода руководству по обеспечению функционирования организма. Если смотреть под этим углом, хромосомы можно представить как главы книги, а гены как отдельные инструкции по производству белков. Слова, которыми написаны инструкции, называются кодонами, а буквы известны как основания. Основания – буквы генетического алфавита – это четыре нуклеотида, упоминавшиеся страницей или двумя выше: аденин, тиамин, гуанин и цитозин. Несмотря на важность того, чем они занимаются, в этих веществах нет ничего необычного. Гуанин, например, это вещество, которое в большом количестве содержится в гуано, откуда и происходит его название.
Как всем известно, молекула ДНК формой походит на винтовую лестницу или на скрученную веревочную лесенку: знаменитая двойная спираль. Вертикальные элементы этой структуры состоят из разновидности сахара, носящей название дезоксирибоза, а вся спираль представляет собой нуклеиновую кислоту – отсюда название «дезоксирибонуклеиновая кислота». Перекладины (или ступеньки) образуются соединяющимися в промежутках двумя основаниями, причем они соединяются только двумя способами: гуанин всегда соединяется с цитозином, а тиамин – всегда с аденином. Последовательность, в которой эти буквы появляются, если двигаться вверх или вниз по лестнице, составляет генетический код; его точным считыванием занят международный проект «Геном человека».
А самая яркая особенность ДНК заключается в способе ее самовоспроизведения. Когда приходит время создавать новую молекулу ДНК, обе нити расходятся, подобно молнии на куртке, и половинки разделяются, чтобы образовать новую компанию. Поскольку каждый нуклеотид соединяется только с одним парным ему нуклеотидом, каждая нить служит матрицей для создания новой подходящей ей в пару нити. Имея всего одну нить собственной ДНК, довольно просто воссоздать парную ей вторую нить, подобрав нужные партнерства: если верхняя ступенька на одной нити из гуанина, тогда известно, что верхняя ступенька другой нити должна быть из цитозина. Пройдите вниз по лесенке, подбирая пары ко всем нуклеотидам, и в конце будете иметь код новой молекулы. Именно так происходит в природе, только в природе это совершается очень быст ро – за считаные секунды, что можно назвать вершиной проворства.
По большей части наша ДНК самовоспроизводится со строжайшей точностью, но изредка – примерно один раз из миллиона – буква становится не на то место. Эти явления известны как однонуклеотидный полиморфизм, или SNP. Биохимики немного фамильярно называют их «снипами»[390]. Они обычно теряются в некодирующих звеньях ДНК и не вызывают заметных последствий для организма, но порой оказываются важными. Они могут сделать вас предрасположенным к какому-нибудь заболеванию, но в равной мере могут даровать какое-нибудь небольшое преимущество, например более эффективную защитную пигментацию или способность вырабатывать больше красных кровяных телец, эритроцитов, у кого-нибудь, обитающего на высокогорье. Со временем эти небольшие изменения накапливаются и в индивидуумах, и в популяциях, способствуя отличию тех и других.
Равновесие между точностью и ошибками при самовоспроизведении весьма деликатное. Слишком много ошибок – и организм не может функционировать, слишком мало – и он поступается приспособляемостью[391]. Подобное же равновесие должно быть в организме между устойчивостью и изменчивостью. Рост числа красных кровяных телец может помочь человеку или группе людей, живущих на больших высотах, легче двигаться и дышать, потому что с ростом числа эритроцитов кровь может переносить больше кислорода. Но дополнительные эритроциты также делают кровь более вязкой. Добавьте их слишком много, и, пользуясь сравнением антрополога Темпльского университета Чарлза Вейтца, она станет «густой, как нефть». Это большая нагрузка на сердце. Таким образом, те, кто приспособлен жить на высоте, лучше дышат, но платят за это повышенным риском заболеваний сердца. Таким путем Дарвинов естественный отбор заботится о нас. Он также помогает объяснить, почему мы все так похожи[392]. Эволюция просто не даст вам слишком сильно измениться – во всяком случае, без того, чтобы стать новым видом.
Разница в 0,1 процента между вашими и моими генами объясняется тем самым полиморфизмом наших нуклеотидов[393]. А если вы сравните свою ДНК с ДНК кого-то третьего, соответствие тоже будет составлять 99,9 процента, но полиморфизм будет в большинстве случаев проявляться в других звеньях. Возьмите для сравнения еще больше людей, и вы получите еще больше примеров полиморфизма, однако в еще большем количестве звеньев. На каждое из 3,2 миллиарда ваших оснований где-то на планете найдется человек или группа людей с иным кодом в этом месте[394]. Так что неправильно говорить не только о каком-то определенном, едином для всех геноме человека, но в известном смысле даже вообще о геноме человека. Их насчитывается шесть миллиардов. Все мы на 99,9 процента одинаковы, но в равной мере, по словам биохимика Дэвида Кокса[395], «вы могли бы утверждать, что между всеми представителями рода человеческого нет ничего общего, и это было бы тоже верно».
Но нам все еще надо объяснить, почему такая малая часть ДНК имеет какое-то ощутимое предназначение. Хотя от этого становится несколько не по себе, но, похоже, цель жизни действительно состоит в том, чтобы обеспечивать вечное существование ДНК. 97 процентов в наших ДНК, обычно называемых мусором, по большей части состоят из наборов букв, как говорит Мэтт Ридли, «существующих по одной простой причине – они хорошо умеют воспроизводиться»[396]. Другими словами, большая часть вашей ДНК преданно служит не вам, а самой себе: вы для нее, а не она для вас. Жизнь, как вы помните, просто хочет быть; это как раз и делает ДНК.
Даже когда ДНК включает инструкции по созданию белков, или, как говорят ученые, кодирует их, – это необязательно ради гладкого функционирования данного организма. Один из самых распространенных генов, который есть у нас, служит для синтеза белка, называемого обратной транскриптазой, не выполняющего никакой известной полезной функции для человека. Единственное, что он делает, так это дает возможность ретровирусам, таким как ВИЧ, проникать незамеченными в человеческий организм.
Другими словами, наши организмы прилагают значительные усилия для производства белка, который не приносит никакой пользы, а порой вредит нам. У них нет другого выбора, потому что так приказывают гены[397]. Мы – сосуды для их прихотей. В общем, почти половина человеческих генов – самая большая доля среди всех изученных организмов – не делает, можно сказать, ничего, кроме собственного воспроизводства.