он разгадал загадку «полуживых» организмов Холдейна.
С самого начала экспериментальная работа Фокса с белками неизменно подвергалась критике. К моменту полета «Аполлона-11» критика значительно усилилась. За полтора десятка лет после эксперимента Миллера – Юри объем информации о молекулярной организации живой клетки рос экспоненциальным образом, которая и легла в основу идей Фокса о первых формах жизни.
Как почти все ученые, работавшие в то время в этой области, Фокс полагал, что полноценные живые клетки не могли возникнуть на первозданной Земле сразу полностью сформированными. Сначала должны были появиться простые компоненты живых клеток, а уже потом начался длительный эволюционный процесс, приведший к возникновению современных клеток. Но какими были эти ключевые компоненты? Вообще говоря, в поисках микроскопической жизни в других мирах Фокс и другие ученые, работавшие в рамках программы НАСА по астробиологии, пытались ответить все на тот же извечный вопрос: что делает живые клетки по-настоящему живыми?
В 1944 г. австрийский физик-теоретик Эрвин Шрёдингер написал книгу «Что такое жизнь?». Это был старый вопрос. Даже древние люди подмечали разницу между растениями и животными, с одной стороны, и неодушевленным миром – с другой. Виталисты прошлых веков пытались определить суть этого различия. Однако мало кто рассматривал проблему с математической точки зрения, вот почему книга Шрёдингера вызвала невероятное возбуждение в научном мире.
Шрёдингер был физиком, причем весьма знаменитым. За вклад в развитие квантовой механики он был удостоен Нобелевской премии, и к вопросу о сущности жизни он, естественно, тоже подходил как физик. По его мнению, ключевая характеристика любой формы жизни заключается в способности противостоять неизбежной судьбе материи в физическом мире – распаду под действием фактора энтропии. Живые организмы противостоят распаду за счет «поглощения порядка» из окружающей среды: они используют химические элементы и энергию окружающей среды и трансформируют их в процессе метаболизма. Кроме того, Шрёдингер подметил еще один признак, отличающий живые организмы от неживой материи. Речь идет о мутации – воспроизведении самого себя с изменениями; именно эта идея лежит в основе современной версии теории эволюции.
Шрёдингер показал, что ключевую роль в механизме наследования должна играть специфическая молекула, которую он назвал непериодическим кристаллом, поскольку, по его предположению, молекула с такой функцией должна быть упорядоченной и стабильной и за счет этого иметь возможность передаваться из поколения в поколение, что невозможно, скажем, для коллоидных суспензий (коацерватов). Кристалл должен быть непериодическим, чтобы содержать бесконечное число вариаций и тем самым обеспечивать возможность мутаций и эволюции. Другими словами, это должна быть единая молекула, атомы которой могут хранить информацию.
Поскольку первые формы жизни, судя по всему, были намного проще полноценных клеток, вероятно, вначале сформировались какие-то части клеток. Первые «полуживые» существа (которые позднее назвали протоклетками) должны были обладать двумя способностями: использовать для метаболизма компоненты внешней среды и воспроизводиться с модификациями. На решающее значение тех же функций – метаболизма и репликации – указывали Опарин и Холдейн. Проблема в том, что эти две функции осуществляются разными, хотя и взаимосвязанными, подсистемами внутри одной клетки.
Позднее данную проблему стали представлять в виде парадокса о происхождении курицы и яйца, но в середине XX в., когда эксперимент Миллера и Юри оживил исследования в области происхождения жизни, проблема еще не вырисовалась окончательно. Ученые хорошо представляли себе функционирование метаболических ферментов, но о хромосомах практически ничего не было известно. Благодаря работе Томаса Ханта Моргана о роли хромосом в механизме наследования стало ясно, что хромосомы являются ключевым элементом генетических процессов. Но никто пока не понимал, из чего же, на самом деле, состоят хромосомы. Логично было предположить, что за репликацию и метаболизм отвечает одна и та же часть клетки, что курица и яйцо – одно и то же. Однако в то время ученые еще плохо понимали, как устроена клетка.
Структура клетки является одним из самых веских доказательств глубокой эволюционной связи между всеми формами жизни на Земле. Как когда-то Жоффруа Сент-Илер заметил общее между такими, казалось бы, несхожими придатками тела, как крыло птицы и рука человека, так и микробиологи, по мере усовершенствования методов анализа, выявили удивительное сходство в структуре клеток самых разных организмов. Удивительное единообразие структуры, функции и даже генетического строения клеток доказывает их происхождение из единого источника.
На Земле существует лишь два типа клеток: прокариотические (от лат. pro – перед, вместо и греч. karyon – ядро, доядерные) и эукариотические (содержащие «истинное ядро») к летки. Самые простые организмы – это одноклеточные прокариоты (безъядерные клетки). Все многоклеточные организмы (растения, животные, грибы) относятся к эукариотам. Любой многоклеточный организм напоминает колонию клеток, каждая из которых запрограммирована на выполнение определенной задачи и зависит от функционирования других клеток. В человеческом организме клеток так много, что их точное число трудно установить. Некоторые считают, что их около 100 трлн, однако большинство специалистов склоняется к тому, что их число составляет одну треть этой величины.
Первым человеком, увидевшим живую клетку, был Антони ван Левенгук, хотя иногда первенство отдают его современнику Роберту Гуку. В книге «Микрография» Гук описал микроскопические структуры, которые он обнаружил в кусочке древесной коры. На самом деле, это были не клетки, а остатки клеточных стенок, состоявших из целлюлозы и лигнина. Гук назвал эти структуры клетками (cell, производное от лат. cella – маленькая комната). Таким образом, клетки получили свое название от той части клетки, которую проще всего было разглядеть с помощью первых микроскопов, а именно от защитной оболочки, названной позднее клеточной стенкой.
На самом базовом уровне клетка состоит всего из нескольких основных элементов. Однако эти элементы соединены между собой невероятно сложным образом и формируют динамичный функциональный аппарат, состоящий главным образом из белков. Известно несколько десятков тысяч типов белков, и каждый из них играет специфическую роль в функционировании клетки. Практически все функции живой клетки (дыхание, питание, рост, размножение) осуществляются белками или при участии белков.
В каком-то смысле ученые считали цитоплазму (вязкий раствор белков и нуклеиновых кислот, окруженный клеточной мембраной) современным аналогом протоплазмы – загадочной сущности живого организма, наделяющей его всеми специфическими свойствами. Наиболее важной частью цитоплазмы считались белки. В первой половине XX в. многие исследователи склонялись к мысли, что белки являются также и носителями генетической информации. Ключевая роль белков в метаболизме клеток была очевидна, но постепенно некоторые ученые начали сомневаться относительно их роли в передаче наследственной информации.
Как и многие другие ученые, занимавшиеся вопросами происхождения жизни, Сидней Фокс полагал, что ведущую роль во всех клеточных процессах играют белки. Основатель современной генетики Морган из Калтеха частенько говорил ему: «Фокс, все жизненные процессы связаны с белками». Фокс еще больше утвердился в этой мысли, когда оказался в лаборатории одного из ведущих специалистов по белкам, химика Макса Бергманна, немецкого еврея, бежавшего из нацистской Германии и организовавшего лабораторию в Университете Рокфеллера в Нью-Йорке.
Вторая мировая война почти не коснулась Фокса. Он вернулся в Калифорнию, где устроился на работу в частную лабораторию, занимавшуюся разработкой методов выделения витамина A из печени акул. Витамин A назначали военным пилотам для улучшения ночного зрения. В 1953 г. эксперимент Миллера – Юри встряхнул научный мир, и Фокс вернулся к «большому вопросу», волновавшему его со времен работы в Калтехе, – вопросу о происхождении жизни.
Вслед за Миллером и Юри другие ученые тоже стали проводить подобные опыты, пытаясь воспроизвести образование аминокислот. Одни предлагали модели на основании иного состава первичной атмосферы Земли, другие – иного состава газовой смеси. Молнию Миллера заменили другими источниками энергии. Однако Фокс не хотел идти тем же путем, которым уже прошли Миллер и Юри. Вопрос о появлении первых аминокислот еще не был полностью разрешен, но до разгадки было недалеко. Происхождение органических молекул уже не казалось великой тайной и таким непреодолимым препятствием, каким было раньше. Фокс обратился к изучению следующего этапа развития живых организмов. Он хотел понять, как аминокислоты могли образовать первые прототипы живых клеток на той стадии эволюции, которую Холдейн называл «полужизнью». Фокс считал, что следующим шагом эволюции было образование белков или их аналогов из аминокислот.
Это была более сложная проблема, чем та, которой занимались Миллер и Юри. Даже самый маленький белок представляет собой длинную последовательность (полимер) аминокислот, организованных в строго определенном порядке, поэтому слово «секвенирование» в применении к белкам означает определение точного порядка расположения аминокислотных остатков в молекуле белка. Позднее это слово чаще стали использовать для анализа последовательности генов на хромосомах и отдельных нуклеотидов внутри генов.
Получить полноценный белок из простых аминокислот, образовавшихся в эксперименте Миллера и Юри, было невероятно сложно. Однако Фокс достаточно быстро нашел один ответ. В то время как научный мир, разбуженный экспериментом Миллера и Юри, вновь обратился к изучению происхождения жизни, Фокс задумался над тем, как из простых аминокислот могут складываться более сложные структуры. И вот однажды, во время чтения лекции, его осенило: что произойдет, если упаривать раствор аминокислот в некоей среде, напоминающей «маленький теплый пруд» Дарвина?