Краткая история сотворения мира. Великие ученые в поисках источника жизни на Земле — страница 47 из 57

ые из этих экстремофилов, называемых в популярной литературе «супербактериями», могут жить при температуре ниже температуры замерзания воды. Другие, называемые ацидофилами, живут за счет расщепления газов, растворенных в сточных водах, и обладают такой корродирующей активностью, что могут разъедать современные системы очистки воды.

Многие из экстремофилов в основании дерева Вёзе являются гипертермофилами, то есть микроорганизмами, способными жить в очень горячих водных средах. Впервые они были идентифицированы американским микробиологом Томасом Броком, который обнаружил их в горячих источниках Национального парка Йеллоустоун в Вайоминге. Позднее было выявлено 70 видов гипертермофилов, причем некоторые из них живут в гидротермальных источниках с температурой воды выше температуры кипения[63].

На протяжении десятилетий исследования в области геологии развивались в рамках модели «первичного супа», предложенной Опариным и Холдейном. Со временем геологи создали достаточно сложные методы определения состава первичной атмосферы Земли на основании анализа базальтов – горных пород, образующихся в результате вулканической активности. И, хотя Опарин считал, что первичная атмосфера Земли в основном состояла из метана и аммиака, постепенно ученые приходили к выводу, что ее основными компонентами были азот и углекислый газ. К концу 1970-х гг. значительная часть идей Опарина была пересмотрена. То же самое относилось и к следствиям, вытекавшим из эксперимента Миллера – Юри. Возникла необходимость создания новой модели зарождения жизни.

По мнению многих ученых, такая модель должна была опираться на то, что в основании дерева Вёзе находились экстремофилы. Возможно, они были ближайшими потомками LUCA, их способность существовать в экстремальных средах объяснялась тем, что именно в таких условиях появился сам LUCA. На основании этого предположения возникло несколько новых гипотез. Одна из них появилась из неожиданного источника: ее автором был патентный поверенный из Мюнхена Гюнтер Вахтерхойзер, считавший, что идеальным местом для зарождения первых форм жизни была поверхность железосерных минералов.

Гюнтер Вахтерхойзер был другом Карла Вёзе, с которым тот делился своими сомнениями по поводу справедливости теории Опарина о первичном супе. Прежде чем стать юристом, Вахтерхойзер был химиком-органиком и интересовался проблемой происхождения жизни. В гостях у их общего друга, философа Карла Поппера, он рассказал Вёзе о своей новой идее, заключавшейся в том, что жизнь зародилась в гидротермальных источниках в глубинах океана. Первый такой источник был обнаружен подводной лодкой «Алвин» в 1977 г. у Галапагосского архипелага. Вёзе был заинтригован и посоветовал Вахтерхойзеру разработать эту модель более детально. Вахтерхойзер предложил серию химических шагов зарождения жизни, начиная от минеральных отложений у гидротермальных источников, защищенных от внешнего воздействия. Он верил, что жизнь началась на поверхности минералов сульфида железа, и его модель стали называть моделью «железосерного мира».

Идеи Вахтерхойзера завоевали поддержку сторонников теории первичности метаболизма, считавших, что эволюция генетического материала была сравнительно поздним этапом развития жизни. Вахтерхойзер вывел из нового дерева жизни еще одно заключение. Большинство организмов в основании дерева Вёзе были автотрофами, способными существовать исключительно за счет поглощения неорганических веществ, таких как углекислый газ и сероводород. Если первые организмы были автотрофами, им для «питания» не нужны были органические молекулы, что было основной догмой в модели Опарина. Наконец, Вахтерхойзер предположил, что первые живые существа не имели клеточной мембраны. Вероятно, это было самое спорное предположение в его модели, поскольку большинство ученых, занимавшихся проблемой происхождения жизни, считали, что для постепенного усложнения организмов необходим химический барьер, отделяющий их от окружающей среды.

Некоторые ученые, в частности геохимик Майк Рассел, пытались совместить модель Вахтерхойзера и очевидную необходимость отделения внутриклеточного пространства от окружающей среды. Рассел и его коллега А лан Холл (оба специалисты по железосерным минералам) отталкивались от идеи Вахтерхойзера о богатых минеральными веществами гидротермальных источниках и предсказали существование гидротермальных источников с гораздо более мягкими условиями. Их гипотеза получила подтверждение в 2000 г., когда подводный аппарат «Арго» обнаружил Потерянный город, оказавшийся скоплением именно таких гидротермальных источников, о которых говорил Рассел. Кроме того, Рассел и Холл предложили модель формирования примитивной клеточной мембраны. При смешивании щелочной воды из гидротермального источника с более кислой океанской водой образуются пузырьки, состоящие из сульфидов и других минеральных соединений. Именно они могли играть роль примитивных мембраноподобных оболочек.

До сих пор в этом вопросе остается много неясного. Даже гидротермальные источники с более мягкими условиями кажутся не совсем подходящим местом для возникновения жизни. Спустя годы после создания Вахтерхойзером модели железосерного мира у нас еще слишком мало экспериментальных подтверждений. Многие ученые полагают, что ключом к разгадке является молекула, над которой Карл Вёзе размышлял еще в 1967 г. В своей первой и единственной книге «Генетический код» (The genetic code) он предположил, что с самых древних времен чрезвычайно важную и многогранную роль в развитии клетки играла РНК.

Глава 13. Рождение клетки

Честный человек, вооруженный всем доступным сейчас знанием, подтвердит, что возникновение жизни представляется сейчас почти чудом, ведь чтобы начался этот процесс, необходимо было выполнить множество условий. Но из этого не следует, что жизнь не могла зародиться на Земле в процессе вполне допустимой последовательности довольно обычных химических реакций. Дело в том, что прошло слишком много времени; многие микросреды на поверхности Земли слишком разнообразны; различные химические возможности слишком многочисленны, а наши собственные знания и воображение слишком ничтожны, чтобы позволить нам точно объяснить, как это могло произойти в таком далеком прошлом, особенно если мы не располагаем экспериментальными данными из той эпохи.

Френсис Крик. Жизнь, как она есть: ее зарождение и сущность, 1981 г.

В 1986 г. в разделе «Новости и мнения» журнала Nature была опубликована статья физика и биохимика, лауреата Нобелевской премии Уолтера Гилберта. За восемь лет до этого в том же разделе того же журнала он высказал гипотезу о том, что в генах существуют некие последовательности, интроны, которые вырезаются из РНК в процессе трансляции в белки. Тем самым Гилберт предложил решение одной давнишней проблемы в биологии. На этот раз он предлагал решение еще одной, даже более важной загадки, беспокоившей специалистов в области происхождения жизни на протяжении десятилетий. Речь идет о дилемме «курица или яйцо»: что возникло сначала – репликация или метаболизм?

На отрезке времени длительностью около полумиллиарда лет (от момента возникновения Земли до появления LUCA) должен был существовать еще более примитивный организм, который ученые иногда называют первым живым организмом, FLO (first living organism). Это нечто чуть более сложное, чем просто комплекс химических молекул, возможно, какой-то отдельный компонент сложного аппарата современной клетки. Но какой? Когда Стэнли Миллер и Сидней Фокс впервые поставили этот вопрос, ответ казался очевидным: это был белок, поскольку в то время большинство ученых считали, что белок является не только ключевым фактором метаболизма, но и носителем генетической информации. В результате работы Крика, Уотсона и других ученых по выяснению роли ДНК все внимание сместилось в сторону этого главного элемента наследственности, вполне способного инициировать эволюционный процесс. Но ДНК – лишь хранилище информации, и она не имеет возможности действовать самостоятельно, а комплекс ДНК и белков слишком сложен, поэтому он не мог возникнуть в первых протоклетках. Первым должно было появиться что-то одно.

В статье в Nature, опубликованной в 1986 г., Гилберт утверждал, что ответ следовало искать в другом месте. Он вернулся к гипотезе, впервые сформулированной Вёзе в 1967 г. В книге «Генетический код» Вёзе писал, что изначально работу и ДНК, и белков должен был выполнять их теперешний посредник – РНК. В 1968 г. Френсис Крик и Лесли Орджел одновременно опубликовали пару статей, в которых также утверждали, что жизнь поначалу была основана на РНК. Впоследствии было признано, что статья Орджела «Эволюция генетического аппарата» наиболее полно отражает суть идеи, хотя поначалу она почти не привлекла внимания. В 1986 г. функция РНК была изучена уже гораздо подробнее. Кроме того, возврату к этой идее способствовало одно важнейшее открытие, сделанное независимо двумя микробиологами: Томасом Чеком и Сиднеем Олтменом.

В 1978 г. Чек, тогда еще сравнительно молодой преподаватель Колорадского университета в Боулдере, начал выделять белок, ответственный за недавно описанный Гилбертом сплайсинг генов – вырезание интронов из молекул РНК и соединение их последовательностей. Чек предполагал, что выделить белок будет достаточно просто. Нужно только взять клеточный экстракт и разделять его до тех пор, пока не будет обнаружен элемент, осуществляющий сплайсинг. Однако работа зашла в тупик. Сплайсинг происходил даже в тех образцах, в которых, как были уверены исследователи, не было никакого белка. В конечном итоге, удалось доказать, что за вырезание интронов отвечает сама РНК.

Вскоре после начала этих экспериментов Сидней Олтмен из Лаборатории молекулярной биологии в Кембридже, которой руководили Сидней Бреннер и Френсис Крик, занялся изучением необычного фермента, называемого рибонуклеазой P. Необычность фермента заключается в том, что около 80% его массы составляет РНК, что ученые долгое время считали малозначащей аномалией. Позднее Олтмен получил должность профессора в Йельском университете, но продолжал исследования. Он пришел к выводу, что РНК была главной каталитической составляющей рибонуклеазы P. Именно РНК, а не белок отвечала за каталитическую активность фермента.