Краткая история времени. От Большого взрыва до черных дыр — страница 13 из 38

Вначале считалось, что атомное ядро состоит из электронов и разного [для разных атомов] количества положительно заряженных частиц – протонов (от греческого слова, означающего «первый», – предполагалось, что протоны являются фундаментальными частицами, из которых состоит вещество). Но в 1932 году коллега Резерфорда по Кембриджу Джеймс Чедвик открыл, что атомные ядра содержат также и другие частицы почти с такой же массой, как и у протона, но без электрического заряда. Эти частицы получили название «нейтроны». За свое открытие Чедвик получил Нобелевскую премию и был избран главой колледжа Гонвилля и Киза в Кембридже (того самого колледжа, где я сейчас работаю). Впоследствии Чедвик ушел в отставку с этого поста из-за разногласий с научными сотрудниками. Когда группа молодых ученых, вернувшихся с войны, сместила многих старых профессоров с должностей, которые те занимали долгие годы, в колледже возникло ожесточенное противоборство. Это было еще до меня – меня приняли в колледж в 1965 году, уже на излете конфликта, когда из-за похожих разногласий был вынужден уйти в отставку другой глава колледжа и нобелевский лауреат сэр Невилл Мотт.

Еще 30 лет назад протоны и нейтроны считались элементарными частицами, но эксперименты по столкновению протонов и электронов на высоких скоростях показали, что в действительности они состоят из более мелких частиц. Физик из Калифорнийского технологического института Марри Гелл-Манн назвал их кварками и в 1969 году был удостоен Нобелевской премии за свои работы, посвященные этим частицам. Название это происходит из загадочной цитаты из романа Джеймса Джойса: «Три кварка для мастера Марка!»[13]. Вообще слово quark («кварк») следует произносить как quart («кворт»), но с «к», а не «т» на конце. Однако это слово обычно рифмуют с lark («ларк»).

Есть несколько видов кварков – всего шесть так называемых ароматов: нижний, верхний, странный, очарованный, прелестный и истинный. Первые три известны с 60-х годов XX века, очарованный был открыт только в 1974 году, прелестный – в 1977 году, а истинный – в 1995 году. Кварки каждого аромата бывают трех «цветов» – красного, зеленого и синего. (Следует отметить, что эти термины – всего лишь условные обозначения: кварки намного меньше длины волны видимого света и поэтому не имеют цвета в общепринятом смысле. Просто современные физики отличаются более творческим подходом к выбору названий для частиц и явлений и не ограничиваются словами греческого языка!) Протоны и нейтроны состоят из трех кварков, по одному каждого цвета. Протон состоит из двух верхних и одного нижнего кварка, а нейтрон – из двух нижних и одного верхнего. Из других кварков (странных, очарованных, прелестных и истинных) тоже можно составлять частицы, которые, правда, оказываются намного более массивными и быстро распадаются на протоны и нейтроны.

Теперь мы знаем, что ни атомы, ни протоны, ни нейтроны не являются неделимыми. Так что возникает вопрос: что же такое по-настоящему элементарные частицы, из которых, как из кирпичиков, состоит все? Длина волны света намного больше размера атома, и поэтому нельзя надеяться, что мы сможем «рассмотреть» части атомов привычным нам способом. Придется использовать нечто с куда меньшей длиной волны. Как мы выяснили в предыдущей главе, квантовая механика учит, что частицы в действительности представляют собой волны и что чем выше энергия частицы, тем короче длина соответствующей волны. Так что качество ответа на наш вопрос зависит от того, насколько «энергичные» частицы имеются в нашем распоряжении. Ведь от этого зависит, насколько мелкие длины и размеры мы сможем «разглядеть». Энергии частиц обычно измеряются в единицах под названием «электрон-вольт». (В своих экспериментах с электронами Томсон использовал для ускорения этих частиц электрическое поле. Энергия, приобретаемая электроном в поле с разностью потенциалов в один вольт, – это то, что принимается за 1 электрон-вольт.) В XIX веке, когда из всех энергий частиц люди умели использовать только небольшую долю – на уровне нескольких электрон-вольт, – которую обеспечивали химические реакции вроде горения, атомы считались мельчайшими частицами вещества. В эксперименте Резерфорда энергии альфа-частиц достигали нескольких миллионов электрон-вольт. Потом мы научились с помощью электромагнитных полей разгонять частицы до энергий сначала в миллионы, а потом и миллиарды электрон-вольт. И теперь мы знаем, что частицы, считавшиеся 30 лет назад элементарными, на самом деле состоят из более мелких «деталей». Но не окажется ли так, что по мере продвижения в область еще более высоких энергий в составе этих частиц удастся разглядеть еще более мелкие? Это, разумеется, возможно, но некоторые теоретические соображения позволяют считать, что мы уже подошли вплотную к пониманию фундаментальных структурных элементов природы или даже достигли его.

С точки зрения рассмотренного в предыдущей главе корпускулярно-волнового дуализма все во Вселенной, включая свет и тяготение, можно описать при помощи частиц. У этих частиц есть свойство, называемое спином. Его можно представить себе, сравнив частицы с маленькими волчками, вращающимися вокруг своей оси. Однако такое сравнение не слишком точное, потому что согласно квантовой механике у частиц нет четко определенной оси. В действительности спин свидетельствует о том, как частица выглядит с разных сторон. Частица с нулевым спином похожа на точку: она выглядит одинаково, независимо от того, с какой стороны на нее смотреть (рис. 5.1i). Частица со спином 1 напоминает стрелку: она выглядит по-разному с разных направлений (рис. 5.1ii). Чтобы снова увидеть ее такой же, частицу надо повернуть на 360 градусов. Частица со спином 2 похожа на двустороннюю стрелку (рис. 5.1iii): она будет выглядеть так же, если повернуть ее на 180 градусов. Аналогично частицы с бóльшими спинами выглядят так же, если повернуть их на меньшую долю полного оборота. Все это выглядит довольно просто, но у некоторых частиц есть замечательное свойство: они не выглядят такими же, если сделают полный круг, – их надо повернуть на два оборота! Про такие частицы говорят, что их спин равен 1/2.

Все известные элементарные частицы во Вселенной можно подразделить на две группы: частицы со спином 1/2, из которых состоит вещество во Вселенной, и частицы со спином 0, 1 или 2, которые, как мы увидим, порождают силы, действующие между частицами вещества. Частицы вещества подчиняются так называемому принципу запрета Паули. Этот принцип был открыт в 1925 году австрийским физиком Вольфгангом Паули, в 1945 году получившим Нобелевскую премию за это достижение. Он был типичным физиком-теоретиком: о нем говорили, что одно его присутствие в городе плохо влияло на ход экспериментов! Принцип запрета Паули гласит, что две одинаковые частицы не могут пребывать в одном и том же состоянии, то есть в пределах, определяемых принципом неопределенности: они не могут одновременно находиться в одном и том же положении и иметь при этом одинаковые скорости. Принцип запрета имеет чрезвычайно важное значение, поскольку объясняет, почему частицы вещества не коллапсируют в сверхплотное состояние под действием сил, создаваемых частицами со спином 0, 1 или 2: когда частицы вещества оказываются очень близко друг к другу (то есть имеют очень близкие «координаты»), они должны иметь очень разные скорости и, следовательно, не могут долго находиться в одном и том же положении. Если бы в мире не действовал принцип запрета, кварки бы не образовали отдельные друг от друга протоны и нейтроны, а последние вместе с электронами не могли бы образовывать отдельные друг от друга атомы. Они бы элементарно сколлапсировали, образовав более или менее однородный и густой «суп».


Рис. 5.1


Верное понимание электрона и других частиц со спином 1/2 пришло только в 1928 году – с теорией, предложенной Полем Дираком, который впоследствии был избран на должность Лукасовского профессора математики в Кембридже (эту должность в свое время занимал Ньютон, а сейчас ее занимаю я). Это была первая теория, совместимая как с квантовой механикой, так и со специальной теорией относительности. Она дает математическое объяснение электрону со спином 1/2, то есть толкует, почему электрон не выглядит тождественно, если повернуть его на один полный оборот, и почему нужно повернуть его на целых два оборота. Теория Дирака также предсказывала, что у электрона должна быть частица-двойник – антиэлектрон, или позитрон. Открытие позитрона в 1932 году подтвердило теорию Дирака и принесло ему Нобелевскую премию по физике 1933 года. Теперь мы знаем, что у каждой частицы есть своя античастица, и при взаимодействии они могут аннигилировать (взаимно уничтожиться). (Античастицами носителей взаимодействий являются сами эти частицы.) Из античастиц могут состоять целые антимиры и даже антилюди. Но если вы встретите свою «антисущность», ни в коем случае не пытайтесь пожать друг другу руки! Вы оба исчезнете в сильной вспышке света. Вопрос о том, почему вокруг нас намного больше частиц, чем античастиц, чрезвычайно важен, и я вернусь к нему позже в этой главе.

В квантовой механике считается, что взаимодействия между частицами вещества переносятся частицами с целым спином – 0, 1 или 2. Это означает, что частица вещества, например электрон или кварк, испускает частицу-носитель взаимодействия. Из-за возникающей отдачи скорость частицы вещества меняется. Частица-носитель силы после этого сталкивается с другой частицей вещества и поглощается ею, изменяя тем самым ее скорость, как если бы между двумя частицами вещества действовала сила. Важным свойством частиц-носителей взаимодействия является то, что они не подчиняются принципу запрета. Это значит, что отсутствует предел количеству участвующих в обмене частиц, и поэтому они могут порождать сильное взаимодействие. Однако если частицы-носители взаимодействия имеют большую массу, их будет трудно порождать и трудно обмениваться и