Рис. 7.1
Внезапно я понял, что пути этих лучей никогда не сблизятся друг с другом. Если бы это произошло, то рано или поздно они бы пересеклись. Это все равно что встретить другого беглеца, удирающего от полиции в противоположном направлении, – оба оказались бы в наручниках! (Или, в нашем случае, упали бы в черную дыру.) Но если бы черная дыра поглотила эти лучи, они не могли бы находиться на ее границе. Посему пути лучей на горизонте событий всегда должны быть параллельны друг другу или расходиться. Можно взглянуть на происходящее и с другого угла: горизонт событий, то есть границу черной дыры, можно сравнить с краем тени – тени неминуемой гибели. Если посмотреть на тень, которую отбрасывает предмет, освещенный удаленным источником, например Солнцем, то видно, что лучи света на краю тени не сближаются друг с другом.
Если пути лучей света, образующие горизонт событий – границу черной дыры, – никогда не сближаются, то площадь горизонта событий может оставаться неизменной или увеличиваться со временем, но ни в коем случае не уменьшаться. Ведь это означало бы, что как минимум часть лучей света на границе должны сближаться. В действительности площадь эта увеличивается каждый раз, когда вещество или излучение падают в черную дыру (рис. 7.2). А при столкновении или слиянии двух черных дыр и последующем образовании новой черной дыры площадь горизонта событий последней будет больше или равна сумме площадей горизонтов событий исходных черных дыр (рис. 7.3). Это свойство «неуменьшения» площади горизонта события накладывает важное ограничение на возможное поведение черных дыр. Я так разволновался из-за этого открытия, что той ночью почти не спал. На следующий день я позвонил Роджеру Пенроузу, и он согласился со мной. Вообще-то я думаю, что он уже знал об этом свойстве площади [горизонта событий]. Правда, он использовал немного иное определение черной дыры. Он не осознавал, что оба определения задают одни и те же границы черной дыры и, следовательно, одно и то же значение площади при условии, что черная дыра достигла состояния, которое не меняется со временем.
«Неуменьшение» площади черной дыры отсылает нас к понятию энтропии – физической величине, которая является мерой хаоса в системе. С точки зрения здравого смысла, если никак не вмешиваться в ход событий, то степень беспорядка имеет свойство увеличиваться. (Чтобы убедиться в этом, достаточно просто перестать заниматься ремонтом в доме!) Из беспорядка можно получить порядок (например, покрасить стены), но это потребует усилий и энергии, а значит, уменьшит количество «упорядоченной» энергии в нашем распоряжении.
Рис. 7.2
Рис. 7.3
Точная формулировка этой идеи известна как второе начало термодинамики. Закон гласит, что энтропия изолированной системы всегда возрастает и что при объединении двух систем энтропия объединенной системы больше суммы энтропий исходных систем. Рассмотрим, например, систему молекул газа в контейнере. Молекулы можно представить как маленькие бильярдные шарики, которые постоянно сталкиваются друг с другом и отскакивают от стенок емкости. Чем выше температура газа, тем быстрее движутся молекулы, тем, следовательно, чаще и сильнее они сталкиваются со стенками и тем выше создаваемое ими давление на стенки. Предположим, что первоначально молекулы были сосредоточены в левой стороне контейнера, отделенной перегородкой. Если убрать перегородку, молекулы будут стремиться заполнить обе половины контейнера. В какой-то момент они все случайно могут оказаться в правой или левой части контейнера, но намного больше вероятность того, что количество молекул в правой и левой частях будет практически одним и тем же. Такое состояние менее упорядоченное – или более неупорядоченное, – чем исходное состояние, когда молекулы находились с одной стороны. Поэтому говорят, что энтропия газа возросла. Аналогичным образом можно представить себе систему из двух контейнеров, один из которых содержит молекулы кислорода, а другой – молекулы азота. Если соединить контейнеры и убрать разделяющую их стенку, то молекулы кислорода и азота начнут смешиваться. Наиболее вероятно, что вскоре оба контейнера будет заполнять практически однородная смесь молекул кислорода и азота. Это состояние менее упорядоченное и поэтому характеризуется бóльшей энтропией, чем исходное состояние газов в двух отдельных контейнерах.
Второе начало термодинамики – в отличие, например, от ньютоновского закона гравитации и прочих физических законов – представляет особый случай: оно справедливо не всегда, а лишь в подавляющем большинстве случаев. Вероятность того, что все молекулы в первом контейнере некоторое время спустя окажутся в одной его половине, равна одному шансу из многих миллионов миллионов, но это все же может произойти. Однако появляется куда более простой способ нарушить второе начало термодинамики, когда под рукой имеется черная дыра: достаточно бросить туда некоторое количество вещества с большой энтропией, например контейнер с газом. В этом случае суммарная энтропия вещества вне черной дыры уменьшится. Конечно, можно сказать, что энтропия всего вещества, включая энтропию внутри черной дыры, и не подумает уменьшаться. Но ведь мы не можем заглянуть за горизонт событий и выяснить, какова энтропия заключенного за ним вещества. Было бы прекрасно, если бы у черной дыры был параметр, по которому внешний наблюдатель мог определить ее энтропию и который возрастал бы каждый раз, когда материя, несущая энтропию, падала в черную дыру.
Спустя некоторое время после вышеупомянутого открытия – того свойства, что площадь горизонта событий возрастает при попадании вещества в черную дыру, – аспирант Принстонского университета Яаков Бекенштейн предположил, что площадь горизонта событий может служить мерой энтропии черной дыры. При попадании вещества-носителя энтропии в черную дыру площадь ее горизонта событий возрастает, причем сумма энтропии вещества вне черных дыр и площадей горизонтов никогда не уменьшается.
Эта гипотеза, похоже, позволяла в большинстве случаев избежать нарушения второго начала термодинамики. Однако у нее был очень существенный недостаток. Если черная дыра обладает энтропией, то у нее должна также быть и температура. А тело с определенной температурой должно быть источником излучения определенной интенсивности. Повседневный опыт подсказывает, что если нагреть кочергу на огне, она докрасна раскаляется и излучает свет. При этом тела с более низкой температурой излучают тоже, но мы не замечаем этого, поскольку их излучение весьма слабое. Излучение – обязательное условие, помогающее избежать нарушения второго начала термодинамики. Поэтому черные дыры должны излучать. Но по самому определению черные дыры – это объекты, ничего не возвращающие в мир за своими пределами. Поэтому площадь горизонта событий черной дыры не может считаться ее энтропией. В 1972 году мы вместе с Брэндоном Картером и американским коллегой Джимом Бардином написали статью, в которой обратили внимание, что несмотря на большое сходство между энтропией и площадью горизонта событий, имеет место упомянутая выше неразрешимая проблема. Должен признаться, что я писал эту статью, в частности, под влиянием своего недовольства Бекенштейном, который, как мне казалось, превратно понял суть открытого мной увеличения площади горизонта событий. Но оказалось, что он в целом был прав, хотя его мысль обрела неожиданное для него самого звучание.
В сентябре 1973 года я посетил Москву, где беседовал о черных дырах с ведущими советскими учеными – Яковом Зельдовичем и Алексеем Старобинским. Они убедили меня, что согласно принципу неопределенности квантовой механики вращающиеся черные дыры должны порождать и излучать частицы. Их доводы показались мне убедительными с физической точки зрения, но мне не понравились математические приемы, которыми Зельдович и Старобинский пользовались для описания свойств этого излучения. Поэтому я занялся разработкой более совершенной математической методики и в конце ноября 1973 года представил ее на неформальном семинаре в Оксфорде. В то время я еще не выполнил расчеты и не определил фактическое количество излучаемых частиц. Я ожидал получить именно то излучение, которое Зельдович и Старобинский предсказали в случае вращающихся черных дыр. Завершив вычисления, к удивлению и досаде, я обнаружил, что даже невращающиеся черные дыры должны порождать и излучать частицы с постоянным темпом. Сначала я решил, что полученное излучение свидетельствовало о недопустимости одного из приближений, к которым мне пришлось прибегнуть. Я опасался, что если об этом узнает Бекенштейн, он будет использовать это как довод в пользу своих идей об энтропии черной дыры, которая мне очень не нравилась. Но чем больше я размышлял над этим, тем больше укреплялся во мнении, что мои приближения верны. Окончательно в реальности излучения меня убедил тот факт, что вычисленный спектр излученных частиц в точности соответствовал спектру излучения нагретого тела и что черная дыра излучала частицы как раз с таким темпом, при котором не нарушалось второе начало термодинамики. С тех пор разные люди в разных формах выполнили те же расчеты. И они подтвердили, что черная дыра должна испускать частицы и излучение точно так, как если бы она представляла собой нагретое тело, температура которого зависит только от его массы: чем больше масса, тем ниже температура.
Как же черная дыра умудряется испускать частицы, когда известно, что ничто не может уйти из-под ее горизонта событий? Квантовая механика отвечает на этот вопрос так: частицы появляются не из «нутра» черной дыры, а из «пустого» пространства сразу за горизонтом событий. Это следует понимать следующим образом: пространство, которое мы считаем «пустым», не может быть таковым в действительности, потому что это означало бы, что все поля, включая электромагнитное и гравитационное, должны быть равны нулю. Но величина поля и скорость его изменения со временем сходны с положением и скоростью частицы: согласно принципу неопределенности чем точнее одна из этих величин, тем с меньшей точностью мы можем рассчитать другую. Так, в «пустом» пространстве поле не может быть в точности равно нулю, поскольку в этом случае оно имело бы точное значение (нулевое) и точную скорость изменения (тоже нулевую). Величина поля должна содержать некоторую минимальную неопределенность, или квантовые флуктуации. Эти флуктуации можно рассматривать как пары частиц света или гравитации, которые совместно рождаются в некоторое время, расходятся, а затем снова сходятся и взаимно аннигилируют. Это виртуальные частицы, аналогичные тем, что переносят гравитационную силу Солнца: в отличие от реальных частиц, их невозможно обнаружить непосредственно – с помощью детектора частиц. Но их косвенные проявления – например, небольшие изменения энергии орбит электронов в атомах – поддаются измерению и замечательно согласуются с теоретическими предсказаниями. Из принципа неопределенности также следует возникновение сходных виртуальных пар частиц вещества, таких как электроны и кварки. Но в этом случае один из членов пары должен быть частицей, а второй – античастицей (античастицы света и гравитации совпадают с соответствующими частицами).