Краткая история времени. От Большого взрыва до черных дыр — страница 22 из 38

LIGO, – должны помочь нам установить происхождение гамма-вспышек.

Даже если результат поисков первичных черных дыр будет отрицательным – что представляется вполне вероятным, – мы все же получим важную информацию о ранних этапах эволюции Вселенной. Если бы у истоков космоса царил хаос, если Вселенная была неоднородной или если давление вещества в ней было низким, то число возникших первичных черных дыр превышало бы предел, установленный наблюдениями гамма-фона. Отсутствие должного количества первичных черных дыр можно объяснить, только предположив, что ранняя Вселенная была однородной, а давление вещества – высоким.

Идея об излучении черных дыр – это первый прогноз, который в существенной мере опирается на обе великие теории XX века – общую теорию относительности и квантовую механику. Вначале она встретила сильное сопротивление, потому что была покушением на устоявшуюся точку зрения: как черные дыры вообще могут что-либо излучать? Когда я впервые рассказал о результатах своих расчетов на конференции в Лаборатории Резерфорда – Эплтона под Оксфордом, слушатели отреагировали скептически. По завершении моего доклада председательствовавший на заседании Джон Тейлор из Королевского колледжа Лондона резюмировал, что все это чепуха. Он даже написал по этому поводу статью. Но в конце концов большинство исследователей, включая Джона Тейлора, пришли к выводу, что если наши представления об общей теории относительности и квантовой механике верны, то черные дыры должны излучать, подобно нагретым телам. И хотя нам пока не удалось обнаружить первичную черную дыру, научное сообщество в целом пришло к согласию, что если такой объект будет обнаружен, он должен быть источником интенсивного гамма– и рентгеновского излучения.

То обстоятельство, что черные дыры способны излучать, по-видимому, означает, что гравитационный коллапс не так уж и необратим и бескомпромиссен, как считалось раньше. Если астронавт упадет в черную дыру, масса дыры возрастет, но энергетический эквивалент дополнительной массы в конце концов возвратится во Вселенную в виде излучения. Таким образом, в некотором смысле астронавт получит вторую жизнь. Правда, это будет не очень-то приятная форма бессмертия, потому что личные представления астронавта о времени почти наверняка потеряют актуальность, когда его тело разорвет на части внутри черной дыры! Даже типы частиц, впоследствии излученных черной дырой, будут в целом отличаться от тех, из которых состоял астронавт, – от него останется лишь масса или энергия.

Приближения, которые я использовал при расчете излучения черных дыр, должны быть применимы к черным дырам с массами больше доли грамма. Однако они не работают на завершающем этапе эволюции черной дыры, когда ее масса становится крайне малой. Наиболее вероятно, что черная дыра попросту исчезнет – во всяком случае из нашей области Вселенной – вместе с астронавтом и всякой заключенной в ней сингулярностью, если такая там действительно была.

Такой вывод был первым свидетельством того, что квантовая механика может устранить сингулярности, предсказанные общей теорией относительности. Но те методы, которые я и другие ученые использовали в 1974 году, не могли дать ответ на многие важные вопросы, в том числе о том, возникнут ли сингулярности снова в квантовой теории гравитации. Начиная с 1975 года я стал разрабатывать более действенный подход к теории квантовой гравитации, основанный на фейнмановской сумме по траекториям. Полученные в рамках этого подхода выводы о происхождении и судьбе Вселенной, а также о ее содержимом – например астронавтах, – рассмотрены в следующих двух главах. Мы увидим, что хотя принцип неопределенности накладывает ограничения на точность наших предсказаний, он в то же время способен побороть принципиальную непредсказуемость пространственно-временной сингулярности.

Глава восьмая. Происхождение и судьба Вселенной

Из общей теории относительности Эйнштейна следует, что пространство-время началось в сингулярности Большого взрыва и завершится либо в сингулярности Большого сжатия (в случае коллапса всей Вселенной), либо в сингулярности внутри черной дыры (в случае локального коллапса, например звезды[28]). Любое вещество, упавшее в черную дыру, будет уничтожено в сингулярности, и единственное, что будет доступно восприятию стороннего наблюдателя, – гравитационное влияние его массы. С другой стороны, если учесть квантовые эффекты, похоже, что или масса, или энергия вещества рано или поздно возвратятся во Вселенную, а черная дыра вместе с заключенной в ней сингулярностью испарится и прекратит свое существование. Так может ли квантовая механика иметь столь же фундаментальные последствия для сингулярностей Большого взрыва и Большого сжатия? Что на самом деле происходит на самых ранних и самых поздних стадиях эволюции Вселенной, когда гравитационные поля настолько сильны, что квантовыми эффектами невозможно пренебрегать? Было ли у Вселенной начало и есть ли у нее конец? И если да, то что они собой представляют?

На протяжении 1970-х годов я в основном занимался изучением черных дыр, но в 1981 году вновь заинтересовался вопросами происхождения и судьбы Вселенной. Толчком послужила организованная орденом иезуитов космологическая конференция в Ватикане, в которой я принимал участие. Католическая церковь совершила грубую ошибку, известным образом распорядившись судьбой Галилея: она попыталась навязать свое мнение по научному вопросу, провозгласив, что Солнце обращается вокруг Земли. Теперь, спустя столетия, она решила пригласить специалистов, чтобы посоветоваться с ними по вопросам космологии. В конце конференции участники были удостоены аудиенции папы. По его словам, нет ничего плохого в том, чтобы исследовать эволюцию Вселенной после Большого взрыва, но не следует пытаться разобраться в природе самого Большого взрыва, ибо это был момент творения и, следовательно, дело Божие. Я был рад, что он не знал о теме моего доклада на конференции. Ведь я только что рассуждал о возможности конечного, но безграничного пространства-времени, а это означало, что начала и момента творения как такового не существует. У меня не было желания разделить судьбу Галилея, с которым я ощущаю глубокую внутреннюю близость, в частности потому, что родился ровно через 300 лет после его смерти!

Чтобы разъяснить идеи, которых я и другие исследователи придерживались в вопросе влияния квантовой механики на происхождение и судьбу Вселенной, следует прежде всего разобраться, что согласно общепринятой точке зрения представляет собой история Вселенной, эволюционировавшей в соответствии с так называемой «горячей» моделью Большого взрыва. Эта концепция предполагает, что Вселенная описывается одной из моделей Фридмана, начиная с момента Большого взрыва. Такие модели исходят из того, что Вселенная расширяется и что ее расширение сопровождается остыванием содержащихся в ней вещества и излучения[29]. (При удвоении размера Вселенной температура ее уменьшается вдвое.) Поскольку температура – мера средней энергии или скорости частиц, остывание Вселенной должно существенно сказываться на веществе. При очень высоких температурах частицы во Вселенной движутся так быстро, что легко уходят друг от друга: их не удерживает взаимное притяжение, вызванное электромагнитными или ядерными силами. По мере остывания частицы начинают притягиваться друг к другу и образовывать структуры. Более того, сами типы представленных во Вселенной частиц зависят от температуры. При относительно высоких температурах энергии частиц настолько велики, что при каждом их столкновении образуются разнообразные пары частица – античастица. И хотя некоторые из частиц аннигилируют при столкновении с соответствующими античастицами, скорость их рождения превышает скорость аннигиляции. При более низких температурах, когда сталкивающиеся частицы обладают меньшей энергией, темп рождения пар частица – античастица куда ниже, и аннигиляция протекает интенсивнее, чем рождение пар.

Считается, что в момент Большого взрыва Вселенная имела нулевой размер и поэтому была бесконечно горячей. Но по мере расширения Вселенной температура излучения уменьшалась. Через одну секунду после Большого взрыва она упала примерно до 10 миллиардов градусов. То есть ранняя Вселенная была примерно в 1000 раз горячее, чем вещество в центре Солнца, и примерно такая же горячая, как нутро взорвавшейся водородной бомбы. В это время Вселенная состояла в основном из фотонов, электронов, нейтрино (чрезвычайно легкие частицы, участвующие только в слабом и гравитационном взаимодействиях) и соответствующих античастиц вместе с протонами и нейтронами. По мере того как Вселенная продолжала расширяться, а ее температура падала, столкновения, приводящие к рождению пар электрон – позитрон, стали происходить реже, чем их исчезновения в результате аннигиляции. Таким образом большинство электронов и позитронов аннигилировали, породив дополнительные фотоны, а электронов осталось сравнительно немного. Нейтрино и антинейтрино взаимодействуют друг с другом и с другими частицами очень слабо и поэтому не аннигилируют. Следовательно, они должны встречаться и в настоящее время. Если бы мы только могли их обнаружить, то сумели бы проверить описанную выше картину начала Вселенной, ее «горячей» стадии. К сожалению, за миллиарды лет энергии нейтрино и антинейтрино тоже настолько снизились, что стали недостаточными для непосредственного наблюдения. Правда, если у этих частиц есть ненулевая масса покоя, о чем свидетельствуют результаты некоторых недавних экспериментов[30], то их можно зарегистрировать с помощью косвенных методов: они могут оказаться одной из форм темной материи, о которой упоминалось выше, – гравитационного притяжения которой может оказаться достаточно, чтобы остановить расширение Вселенной и заставить ее снова «схлопнуться».

Примерно через 100 секунд после Большого взрыва температура Вселенной упала до миллиарда градусов, что примерно соответствует температуре в недрах самых горячих звезд. При такой температуре энергии протонов и нейтронов уже недостаточно, чтобы сопротивляться сильному ядерному взаимодействию, и они начинают объединяться в ядра атомов дейтерия (тяжелого водорода), состоящие из одного протона и одного нейтрона. Затем ядра дейтерия соединяются с другими протонами и нейтронами, образуя ядра гелия, которые включают два протона и два нейтрона, а также небольшое количество ядер более тяжелых элементов – лития и бериллия. Согласно расчетам для модели горячего Большого