впоследствии оказалось, что у них не было причин для такого страха. После войны Уилер занимался гравитацией и стал главным коллегой Эйнштейна. Это он ввел в оборот термин «черная дыра», ставший столь популярным[6]. Уилеру принадлежит ряд важнейших гипотез и идей, лежащих в основании исследований по квантовой гравитации. Он предположил, что пространство-время в самом малом масштабе может быть чем-то вроде колеблющейся пены (пены пространства-времени). С Брайсом Девиттом, другим великим американским ученым, они вывели формулу знаменитого уравнения, которое стало фундаментальным в квантовой гравитации. Среди учеников Уилера был Ричард Фейнман, возможно, крупнейший физик второй половины XX века. Короче говоря, он был одной из главных фигур первого плана в развитии всей современной физики. Вообразите, какие чувства я переживал с его письмом в руке!
Как только я приехал, Уилер пришел познакомиться со мной в гостиницу Bed and Breakfast, где я разместился. Мы вместе позавтракали, потом он повел меня на длинную прогулку по кампусу. Я объяснял ему, к каким результатам мы пришли в результате вычислений, а он делился со мной своими необычайными воспоминаниями о Боре, об атомной бомбе… «Видишь ли, Карло, когда Эйнштейн впервые оказался здесь, сбежав из Германии от нацистов, я отправился повидать его ранним утром, вот как я пришел к тебе, и мы прогулялись тогда этим же путем…» Почему даже косвенная близость людей, больше всего повлиявших на склад наших мыслей, наполняет таким волнением? Конечно, они такие же люди, как и прочие, со слабостями, с обычными человеческими качествами, но обаяние их идей создает ни с чем не сравнимую ауру вокруг них. Это они открыли пути, которыми мы теперь имеем счастливую возможность следовать, и это вызывает восхищение, благодарность и прилив теплых чувств.
Джон говорил со мной негромким голосом. Он был преклонных лет, одряхлел, но его внутренние силы не ослабевали. Когда речь зашла о его участии в чудовищной авантюре с атомной бомбой, он защищался в ответ на мои возражения радикального пацифиста. А когда я показал ему свое изображение структуры пространства (см. рисунок 3), он улыбнулся как ребенок и стал искать очень похожее, которое сам нарисовал много лет назад и которое есть в одной из его книг (рисунок 7). Он был обрадован до глубины души, что нашла свое теоретическое завершение идея, которая когда-то пришла ему в голову.
Сегодня петлевую квантовую гравитацию изучают сотни исследователей по всему миру, развивающие эту теорию в разных направлениях. Она нашла свое применение в разных областях науки, например, при изучении Большого взрыва – самой начальной стадии в существовании Вселенной[7] – или свойств черных дыр, в особенности их температуры.
Рисунок 7. «Десять тысяч колец, из которых может быть сформировано пространство-время» в книге «Гравитация» Мизнера, Торна и Уилера, опубликованной в 1970 году. Джон Уилер показал мне это изображение во время моего посещения Принстона.
Применение петлевой теории гравитации к черным дырам последовало за странным открытием, которое сделал в семидесятые годы Стивен Хокинг. Хокинг широко известен, потому что смог продолжить научную работу несмотря на тяжелую болезнь, обрекшую его на жизнь в инвалидной коляске и на общение посредством синтезатора речи, которым он управлял рукой. Одним из его наиболее важных достижений стало теоретическое открытие того факта, что черные дыры «горячие», то есть ведут себя так же, как горячие тела: испускают тепловое излучение определенной температуры. Этот явление получило название «излучение Хокинга» или «испарение» черных дыр, потому что, излучая тепло, черная дыра теряет энергию и медленно «испаряется».
Тела бывают горячими, потому что их микроскопические составляющие находятся в движении. Кусок раскаленного железа – это такой кусок железа, в котором атомы быстро колеблются на своих положениях равновесия. Поверхность черной дыры не состоит из материи. Но тогда, если черная дыра «горячая», что именно в ней колеблется? Петлевая теория предлагает ответ. Колеблющиеся элементарные «атомы» черной дыры, отвечающие за ее температуру, – петли на ее поверхности. Применяя петлевую теорию, можно объяснить и дополнить теорию Хокинга в понятиях микроскопических колебаний петель. Это серьезная, но пока еще не настоящая экспериментальная проверка научной состоятельности петлевой теории.
На протяжении долгого времени мы думали, что не располагаем средствами экспериментальной проверки. Но не так давно стали изучаться различные предложения, которые бы позволили испытать теорию на практике, наблюдая за косвенными следствиями зернистой природы пространства. Была высказана, хотя и не получила успеха, идея о том, что такое строение пространства должно сказываться на распространении света. Разные по длине волны лучи, пересекая зернистое пространство, должны перемещаться со скоростями, которые легко различить. Так происходит в кристалле: свет рассеивается, и красные лучи распространяются быстрее, чем синие, поэтому красный замечаешь чуть быстрее, чем синий. Различие крошечное, но увеличивается с удлинением траектории. Его можно было бы выявить, изучая лучи из самых отдаленных галактик. Чтобы проверить теоретические предсказания таким путем, нужны измерения высокой точности.
Однако подлинная проблема заключается в том, что из самой теории такого следствия не вытекает, поскольку оно нарушило бы природную симметрию, известную как «локальная симметрия Лоренца». Точные подсчеты показали, что в теории не может быть нарушений этой симметрии. Параллельно этому измерения лучей в космосе подтвердили, что и при распространении света подобного нарушения не происходит: даже в излучении, которое приходит с самого большого расстояния, разные цвета достигают нас одновременно. Такой вывод, следовательно, поддерживает правоту теории, но несколько обманчивым образом: теория предсказала, что мы не увидим различий, и мы их действительно не видим. С другой стороны, интересно, что эти расчеты можно проверить на самых малых масштабах: если бы что-то происходило, мы могли бы это увидеть. Это позволяет нам думать, что вполне можно выявить следствия, порожденные теми или иными явлениями в планковском масштабе, то есть на уровне элементарных петель квантованного гравитационного поля.
Следствия теории, имеющие бо́льший шанс, что их можно будет наблюдать, обнаруживаются в другой области – в космологии. Там применение петлевой теории в последние годы вызвало огромный интерес, и это та область, которая наиболее активно исследуется.
За тридцать лет космология сделала впечатляющий шаг в своем развитии. У нас есть теперь значительные и все растущие познания об истории Вселенной и о ее расширении. В 1998 году мы обнаружили, что Вселенная не просто расширяется, но что это расширение происходит с ускорением. Вселенная увеличивается все быстрее. Это расширение с ускорением часто описывают как действие таинственной «темной энергии», но такие выражения не слишком-то уместны. Это ускорение уже было описано в классической теории Эйнштейна – если вспомнить, что значит в ее уравнениях термин «космологическая постоянная». Эйнштейн показал существование такого явления, хотя никто (включая его самого) не воспринимал этого всерьез до открытия расширения с ускорением. При нынешнем состоянии наших познаний будущее Вселенной выглядит как все более и более стремительное удаление галактик друг от друга.
На другом конце истории сумрак тайны сгущается. И петлевая квантовая гравитация может пролить свет на этот момент. Сразу после Большого взрыва Вселенная была очень маленькой. Можно сказать, что она состояла из малого количества пространственных зерен. Эти первоначальные зерна могли оставить следы в наблюдаемой ныне структуре Вселенной, следы, заметные как космическое фоновое (реликтовое) излучение. Это излучение можно вычислить с большой точностью, и оно предоставляет нам много сведений о структуре Вселенной[8]. И хотя приближенно эволюцию большой Вселенной как непрерывного пространства можно смоделировать, этого не получается сделать для начальных ее мгновений. В данном случае следует открыто принимать в расчет зернистую структуру пространства, а значит, использовать уравнения петлевой теории – и получить описание того, что происходило во время и сразу после Большого взрыва.
Уравнения общей относительности Эйнштейна утрачивают силу, когда речь заходит о Большом взрыве, потому что по ним мы получаем бесконечное число количественных значений и подсчет оказывается невозможным. Без теории квантовой гравитации нельзя ничего с уверенностью сказать о том, что происходило при Большом взрыве. Если пытаться просчитать это с помощью старого уравнения Уилера – Девитта, то оно окажется столь же несостоятельным, сколь и классическая теория Эйнштейна. Развитие во времени приостанавливается в момент Большого взрыва, и все перечисленные уравнения теряют смысл. Уравнения же, предложенные петлевой теорией, напротив, равным образом работают и для момента Большого взрыва. И причина именно в зернистости пространства. По мере приближения к Большому взрыву Вселенная все больше сжимается, но не становится «бесконечно» малой, поскольку в теории петель невозможно приписать объемам произвольно малый размер: пространство квантовано, и существует минимальный объем, ниже которого спуститься нельзя.
В США Абей Аштекар и его исследовательская группа развили эти идеи. Первые их неожиданные выводы указывают на то, что Большой взрыв не был подлинным началом событий, а скорее должен рассматриваться как скачок, последовавший за фазой сжатия Вселенной. Такое заключение достаточно надежно, его выводят разными путями. С теоретической точки зрения, большим шагом вперед стало то, что появились уравнения, которые не перестают функционировать при приближении к Большому взрыву. И эти уравнения не приводят к абсурдным бесконечным количествам, а позволяют просчитать, что происходило сразу после Большого взрыва и даже раньше. А с точки зрения научных наблюдений, полученный результат важен, потому что эти уравнения, касающиеся эволюции Вселенной и выведенные на основе квантовой гравитации, слегка отличаются от уравнений классической теории, применяемых в космологии. Разница может иметь ощутимые последствия для наблюдений реликтового излучения в космосе. Такие спутники, как