Краткий курс логики — страница 19 из 38

2. Деление в первой посылке должно быть полным. Например:

Математические действия бывают сложением, или вычитанием, или умножением, или делением. Логарифмирование – это не сложение, не вычитание, не умножение и не деление. Логарифмирование – это не математическое действие.

В силлогизме неполное деление в первой посылке обусловливает ложный вывод, вытекающий из истинных посылок.

3. Результаты деления в первой посылке не должны пересекаться, или дизъюнкция должна быть строгой. Например:

Страны мира бывают северными, или южными, или западными, или восточными. Канада – это северная страна. Канада – это не южная, не западная и не восточная страна.

В силлогизме вывод является ложным, т. к. Канада в такой же степени северная страна, в какой и западная. Ложный вывод при истинных посылках объясняется в данном случае пересечением результатов деления в первой посылке, или, что одно и то же, – нестрогой дизъюнкцией. Следует отметить, что нестрогая дизъюнкция в разделительно-категорическом силлогизме допустима в том случае, когда он построен по отрицающе-утверждающему модусу. Например:

Он силён от природы или же постоянно занимается спортом. Он не является сильным от природы. Он постоянно занимается спортом.

В силлогизме нет ошибки, несмотря на то, что дизъюнкция в первой посылке была нестрогой. Таким образом, рассматриваемое правило безоговорочно действует только для утверждающе-отрицающего модуса разделительно-категорического силлогизма.

4. Деление в первой посылке должно быть последовательным. Например:

Предложения бывают простыми, или сложными, или сложносочинёнными.

Это предложение сложносочинённое. Это предложение не простое и не сложное.

В силлогизме ложный вывод следует из истинных посылок по той причине, что в первой посылке был допущен скачок в делении.

Разделительно-категорический силлогизм в логике часто называют просто разделительно-категорическим умозаключением. Помимо него существует также чисто разделительный силлогизм (чисто разделительное умозаключение), обе посылки и вывод которого являются разделительными (дизъюнктивными) суждениями.

Например:

Зеркала бывают плоскими или сферическими. Сферические зеркала бывают вогнутыми или выпуклыми. Зеркала бывают плоскими, или вогнутыми, или выпуклыми.

Форму приведённого чисто разделительного силлогизма можно представить следующим образом: ((ab) ∧ (b1b2)) → (ab1b2), где (ab) – первая посылка; (b1b2) – вторая посылка; (ab1b2 ) – вывод.


Проверьте себя:

1. Что представляют собой разделительные умозаключения?

2. Какие модусы имеет разделительно-категорический силлогизм?

Приведите по три примера для каждого модуса, изобразив их форму с помощью условных логических обозначений.

3. Каковы правила разделительно-категорического силлогизма?

Какие ошибки возникают при их нарушении? В каком случае дизъюнкция в разделительно-категорическом силлогизме может быть нестрогой? Придумайте по одному примеру для каждой ошибки, возникающей при нарушении соответствующего правила.

4. Чем отличается чисто разделительный силлогизм от разделительно-категорического силлогизма? Приведите два примера чисто разделительного силлогизма.

5. Допущены ли ошибки (и какие) в следующих разделительно-категорических силлогизмах:

1. Четырёхугольники бывают квадратами, или ромбами, или трапециями. Эта фигура – не ромб и не трапеция. Эта фигура – квадрат.

2. Отбор в живой природе бывает искусственным или естественным. Данный отбор не является искусственным. Данный отбор является естественным.

3. Люди бывают талантливыми, или бесталанными, или упрямыми.

Он является упрямым человеком.

Он не талантлив и не бесталанен.

4. Суждения бывают утвердительными или отрицательными.

Это суждение утвердительное.

Это суждение не отрицательное.

5. Учащиеся бывают отличниками или двоечниками.

Мой товарищ не отличник.

Мой товарищ – двоечник.

3.6. Условно-категорический, эквивалентно-категорический и чисто условный силлогизмы

Умозаключения, которые содержат в себе условные (импликативные) суждения называются условными. В мышлении и речи часто используется условно-категорический силлогизм, название которого свидетельствует о том, что в нём первая посылка является условным (импликативным) суждением, а вторая посылка – простым (категорическим). Например:

Если взлётная полоса покрыта льдом, то самолёты не могут взлетать.

Сегодня взлётная полоса покрыта льдом.

Сегодня самолёты не могут взлетать.

Условно-категорический силлогизм имеет два модуса:

1. Утверждающий модус, у которого первая посылка представляет собой импликацию, состоящую, как мы уже знаем, из двух частей – основания и следствия, вторая посылка является утверждением основания, а в выводе утверждается следствие. Например:

Если вещество – металл, то оно электропроводно.

Данное вещество – это металл.

Данное вещество электропроводно.

Форма утверждающего модуса условно-категорического силлогизма: ((ab) ∧ a) → b, где (ab) – это первая посылка в виде импликации основания и следствия; ((ab) ∧ a) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и утверждения основания; b – это вытекающий из посылок вывод силлогизма в виде утверждения следствия.

2. Отрицающий модус, у которого первая посылка представляет собой импликацию основания и следствия, вторая посылка является отрицанием следствия, а в выводе отрицается основание.

Например:

Если вещество – металл, то оно электропроводно.

Данное вещество неэлектропроводно.

Данное вещество – не металл.

Форма отрицающего модуса условно-категорического силлогизма: ((ab) ∧¬ b) → ¬ a, где (ab) – это первая посылка в виде импликации основания и следствия; ((ab) ∧ ¬ b) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и отрицания следствия; ¬ a – это вытекающий из посылок вывод силлогизма в виде отрицания основания.

Необходимо обратить внимание на уже известную нам особенность импликативного суждения, которая состоит в том, что основание и следствие нельзя поменять местами. Например, высказывание: «Если вещество – металл, то оно электропроводно», – является верным, т. к. все металлы – это электропроводники (из того, что вещество – металл, с необходимостью вытекает его электропроводность). Однако высказывание: «Если вещество электропроводно, то оно – металл», – неверно, т. к. не все электропроводники являются металлами (из того, что вещество электропроводно, не вытекает то, что оно – металл). Эта особенность импликации обусловливает два правила условно-категорического силлогизма:

1. Утверждать можно только от основания к следствию, т. е. во второй посылке утверждающего модуса должно утверждаться основание импликации (первой посылки), а в выводе – её следствие.

В противном случае из двух истинных посылок может вытекать ложный вывод. Например:

Если слово стоит в начале предложения, то его надо писать с большой буквы.

Слово «Москва» надо писать с большой буквы.

Слово «Москва» всегда стоит в начале предложения.

В силлогизме во второй посылке утверждалось следствие, а в выводе – основание: ((ab) ∧ b) → a. Это утверждение от следствия к основанию и является причиной ложного вывода при истинных посылках.

2. Отрицать можно только от следствия к основанию, т. е. во второй посылке отрицающего модуса должно отрицаться следствие импликации (первой посылки), а в выводе – её основание. В противном случае из двух истинных посылок может вытекать ложный вывод. Например:

Если слово стоит в начале предложения, то его надо писать с большой буквы.

В данном предложении слово «Москва» не стоит в начале.

В данном предложении слово «Москва» не надо писать с большой буквы.

В силлогизме во второй посылке отрицается основание, а в выводе – следствие: ((ab) ∧ ¬ a) → ¬ b. Это отрицание от основания к следствию и является причиной ложного вывода при истинных посылках.

Вспомним, что среди сложных суждений помимо импликации: ab, есть также эквиваленция: ab. Если в импликации всегда выделяется основание и следствие, то в эквиваленции нет ни того, ни другого, т. к. она представляет собой сложное суждение, обе части которого тождественны (эквивалентны) друг другу. Если первой посылкой силлогизма является не импликация, а эквиваленция, то такой силлогизм называется эквивалентно-категорическим. Например:

Если число чётное, то оно делится без остатка на 2.

Число 16 – чётное.

Число 16 делится без остатка на 2.

Форма модуса данного силлогизма: (ab) ∧ a) → b.

Поскольку в первой посылке эквивалентно-категорического силлогизма нельзя выделить ни основания, ни следствия, то рассмотренные выше правила условно-категорического силлогизма к нему неприменимы (в эквивалентно-категорическом силлогизме и утверждать, и отрицать можно как угодно). Если в условно-категорическом силлогизме два модуса правильных и два неправильных (см. выше), то в эквивалентно-категорическом силлогизме все четыре модуса являются правильными: