Крылья Родины — страница 68 из 72

«Патриархом ракетоплавания» заслуженно и бесспорно титулуется у нас и за границей К. Э. Циолковский. Его «Исследование мировых пространств реактивными приборами» появилось в 1903 году. В этой работе Циолковский дал детально разработанную теорию полета ракеты в разных условиях: в атмосфере и космическом пространстве. По разнообразию и полноте рассмотренных им условий полета и устройства ракет Циолковский по справедливости может быть назван творцом теории космической ракеты на жидком топливе, применяемом ныне в реактивных самолетах.

Ракета, извергающая во время своего полета продукты горения, представляет собой тело, масса которого непрерывно меняется благодаря сгоранию топлива. Анализ движения переменной массы делался задолго до Циолковского многими учеными. Но первое теоретическое исследование полета ракеты, как частный случай движения твердого тела переменной массы, появилось также в России, в сочинении профессора механики Петербургского политехнического института М. В. Мещерского. Эта его работа «Динамика точки переменной массы» была представлена им и защищена как диссертация на получение ученой степени магистра прикладной математики в 1897 году. Однако Мещерский решает задачу схематически.

К. Э. Циолковский исходит из иных предпосылок и расширяет условия задачи, вводя действие переменной силы тяготения и переменного сопротивления воздуха, исследуя вертикальный и наклонный взлет ракеты.

Нечто среднее между теоретическим исследованием и практическим приложением представляет «Проект воздухоплавательного прибора» Н. И. Кибальчича, известного революционера-народовольца — «первомартовца». Его проект был опубликован лишь в 1918 году, но закончен он был Кибальчичем в Петропавловской крепости в марте 1881 года. О сущности проекта, иллюстрированного авторским схематическим чертежом, Кибальчич рассказывает так:

«В цилиндре, имеющем в нижнем дне отверстие, устанавливается по оси пороховая свечка, как я буду называть цилиндрики из прессованного пороха. Цилиндр посредством стоек прикреплен к средней части платформы, на которой должен стоять воздухоплаватель. Представим теперь, что свечка зажжена. Через очень короткий промежуток времени цилиндр наполнится горячими газами, часть которых давит на верхнее дно цилиндра, и если это давление превосходит вес цилиндра, платформы и воздухоплавателя, то прибор должен подняться вверх».

Принципиально идея Кибальчича верна, и полет на такой основе возможен, если дать газам свободный выход и перенести платформу, чтобы не сжечь летателя выходящими газами.

Перед смертью — он был казнен 3 апреля 1881 года — Кибальчич передал проект своему защитнику, и об этом своем изобретении он страстно говорил на суде, как о возможности оказать «громадную услугу родине и человечеству».

Вопросом боевого применения ракет занимался в специальной лаборатории военного ведомства инженер К. И. Константинов. Он ставил множество опытов, определяя движущую силу ракеты, и первым в мире пришел к выводу о неэкономичности реактивного движения при малых скоростях. Выводы его были опубликованы и в России и за границей и полностью совпадают с нынешней точкой зрения на этот вопрос.

О возможности применения реактивного двигателя к воздухоплавательным аппаратам писал в 40-х годах Н. С. Соковнин. Сочинение Соковнина «Воздушный корабль» было переведено на английский язык и появилось в Лондоне в 1886 году, одновременно с русским изданием.

Наконец, в 1896 году развивал ту же мысль А. П. Федоров в своей работе «Новый способ воздухоплавания», исключавшей воздух как опорную среду. Эта книга и побудила Циолковского заняться вопросами реактивного движения.

Любопытную фигуру среди практиков ракетостроения представляет инженер-полковник Н. Н. Герасимов, построивший ракету, несущую на себе снаряд. Осенью 1908 года на Охтенском морском полигоне происходило испытание ее, на которое в качестве председателя Морского технического комитета был приглашен А. Н. Крылов.

«Поехал я посмотреть, — рассказывал академик А. Н. Крылов на торжественном заседании, посвященном 75-летию К. Э. Циолковского. — Ракета была стальная, фута в три с половиной длиною, в диаметре имела около восьми дюймов и наполнена была пороховой мякотью. Хвоста у нее не было, но чтобы сообщить ей устойчивость, изобретатель приспособил крылатку, вроде вентилятора, а на ней маховичок: это гироскопическое приспособление и должно было придать ракете устойчивость при полете. Приехал он на полигон, поставил свой ракетный станок. Мы осмотрели все приспособления, потом он спрашивает: „Ну что же, позволите поджигать?“ — „Нет, нельзя! Здесь, на полигоне, поджигать ракету не иначе полагается, как из блиндажа. Даже при стрельбе из испытанной пушки все люди должны быть в блиндаже, а выстрел производится гальванически по проводу из блиндажа“. Разнесли и прирастили провод, приспособив к ракете воспламенитель. Герасимов нас спрашивает: „Где у нас наблюдатели?“ Отвечают, что они расставлены чуть ли не на восемнадцать верст. „Как раз, — говорит Герасимов, — она на восемнадцать верст и улетит!“ Замкнул он ток, из блиндажа видно было облако дыма. Подходим — ни станка, ни ракеты, ничего, только одни дребезги».

Этот юмористический случай был рассказан А. Н. Крыловым всего лишь десяток лет назад в оправдание недоверия к практическому ракетостроению. Достижения в этой области, сделанные за последние годы, заставляют нас совершенно иначе смотреть на неудачный опыт инженер-полковника Герасимова, но тон рассказа А. Н. Крылова характеризует отношение к реактивному полету в совсем недавнее время.

Предвзятый взгляд на вопрос более всего и способствовал тому обстоятельству, что реактивным движением занимались не ученые, как бы следовало, а новаторы-энтузиасты, из которых каждый если и намеревался летать, то никак не ближе чем на Луну.

В качестве боевого снаряда ракета вывелась из употребления после того, как появились нарезные пушки. Но предметом развлечения она оставалась неизменно в течение многих-многих веков.

Естественно, что когда появились первые аэропланы с тяжелыми и неудобными моторами, у многих людей возникла мысль применить здесь ракетообразный двигатель, простой и легкий, как нарочно созданный для авиации.

Таких предложений было сделано на заре авиации очень много, но теоретического обоснования их работе не имелось. Теория «воздушно-реактивного двигателя», могущего заменить авиационный мотор, впервые была разработана Борисом Сергеевичем Стечкиным.

Еще во времена Воздухоплавательного кружка Жуковский заметил своим ученикам, что надо бы кому-нибудь из членов кружка посвятить себя вопросам авиационного моторостроения. При организации Авиационного расчетно-испытательного бюро и Курсов авиации в особенности специалист по авиамоторам стал совершенно необходим. Развитие авиации в то время настоятельно требовало разделения специальностей пилота, конструктора и моториста, на первых порах соединявшихся в одном лице.

Выбор Николая Егоровича пал на тяготевшего к энергетической технике студента, бывавшего часто в Воздухоплавательном кружке, Бориса Сергеевича Стечкина.

Это был очень удачный выбор. Б. С. Стечкин воспитывался в Орловском кадетском корпусе, как раз в те годы, когда кадетские корпуса перестраивали свои учебные программы, приближая их к вопросам естествознания. Орловский кадетский корпус, в частности, отличался такой хорошей постановкой преподавания естественных наук и математики, что Стечкин, по окончании его в 1908 году, без всякой дополнительной подготовки выдержал конкурсный экзамен для поступления в Московское высшее техническое училище, где и начал учиться.

Юноша, часто бывавший в доме Жуковского и испытавший на себе огромное влияние его светлого ума, принял совет Николая Егоровича и, еще будучи студентом, начал заниматься вопросами авиационного моторостроения. В 1915 году, когда открылись Курсы авиации, Стечкин заведовал моторной лабораторией курсов. Общее руководство занятиями в лаборатории осуществлял профессор, ныне академик, Н. И. Кулебакин, читавший на курсах лекции по вопросам авиационного моторостроения.


Б. С. Стечкин.

В 1915 году в Москву, по желанию Жуковского, приехал из Киева А. А. Микулин. Он начал урывками работать в моторной лаборатории у Стечкина. Совместно они задумали осуществить очень оригинальный авиационный мотор.

Мотор назывался «Амбес», по инициалам конструкторов. Это был один из первых в мире моторов без коленчатого вала, с осями поршней, расположенными параллельно валу. В патенте, правда, конструкторам было отказано, так как имелся патент на двигатель без кривошипного механизма, принадлежащий какому-то иностранцу. Но Стечкин и Микулин все-таки построили свой мотор и подвергли его испытаниям. Испытания не привели к утешительным результатам.

По окончании училища в 1918 году Стечкин был оставлен при Техническом училище для научно-исследовательской работы. Моторная лаборатория Курсов авиации помещалась, как и курсы, на Вознесенской улице. Когда тут организовался, по инициативе Н. Е. Жуковского и А. Н. Туполева, Экспериментально-аэродинамический отдел Народного комиссариата путей сообщения, моторная лаборатория вошла в его винто-моторную секцию, которой стал заведовать Стечкин.

А в конце того же, 1918 года Б. С. Стечкин вместе со своей лабораторией вошел в состав ЦАГИ, возглавив здесь винто-моторный отдел.

В непосредственной близости к Жуковскому Стечкин формировался скорее как ученый и исследователь, нежели как конструктор. Он ставил перед винто-моторным отделом чисто исследовательские задачи. С организацией ЦАГИ ему удалось превратить моторную лабораторию из учебной в научно-исследовательскую и создать для этой цели экспериментальную базу.

Отдельных оригинальных и весьма ценных научно-исследовательских работ сотрудниками винто-моторного отдела было проведено очень много.

Вопросами реактивного движения с особенной страстностью занимался здесь Ф. А. Цандер — человек совершенно необычайной целеустремленности, скромный, застенчивый и тихий в жизни, но исполненный внутренне грандиознейших замыслов и непреклонной веры в их осуществление.