Кто изобрел современную физику? От маятника Галилея до квантовой гравитации — страница 44 из 54

— Чего хотите вы от этаких людей?!

— Уже до атомов добрался, лиходей! —

негодовал поэт от имени буржуя. А от своего имени революционно подытожил: «В науке пахнет тож кануном Октября».

Три года спустя Гамов стал членкором Академии наук СССР, самым молодым физиком в ее истории. Но стать самым молодым академиком ему не довелось. Чувствовал он себя на родине неуютно.

В СССР он приехал осенью 1931 года не с пустыми руками, а с приглашением на Первый международный конгресс по ядерной физике в Риме — сделать один из главных докладов. «George Gamow (Soviet Union)» — значилось в повестке конгресса. Большая честь для молодого физика и, казалось бы, для его родины. Но советская родина почему-то не пустила Гамова на конгресс. Это было ужасно обидно, хотя можно было еще думать, что причина — неповоротливость советской бюрократии: не успели оформить нужные бумаги, ну, что поделаешь… Однако, когда Гамову не дали воспользоваться приглашением Нильса Бора на конференцию в свой институт и еще несколькими приглашениями, стало ясно: началась какая-то другая страница истории. Теперь мы знаем, что начала строиться сталинская стена, отделившая Россию от остального мира на долгие полвека.

Гамова взял на работу Радиевый институт, директор которого — академик Владимир Вернадский — понимал, что «одаренная для научной работы молодежь есть величайшая сила и драгоценное достояние человеческого общества, в котором она живет, требующая охраны и облегчения ее проявления». Именно он выдвинул кандидатуру 27-летнего Гамова в Академию наук.

Вольной птице в клетке не поется, даже если ей присвоить почетное звание. Гамов пытался выскользнуть из клетки: то на байдарке по Черному морю, нацелившись на турецкий берег, то на северных оленях, нацелившись на Финляндию. По примеру знаменитой лягушки «дрыгал лапками». Увы, клетка была не квантовая, и не было возможности туннельно просочиться сквозь стенку. На счастье Гамова, в 1933 году дверца клетки приоткрылась. Гамова командировали на важный научный конгресс, откуда он уже не вернулся, став «невозвращенцем», — что по тогдашним советским законам каралось смертной казнью.

Как отнесся Вернадский к решению Гамова? Несомненно, с горечью, но вряд ли безоговорочно осуждая. По его словам,

ученый по существу интернационален — для него на первом месте, раньше всего, стоит его научное творчество, и оно лишь частично зависит от места, где оно происходит. Если родная страна не даст ему возможности его проявить, он морально обязан искать этой возможности в другом месте.

Незаконное рождение Горячей Вселенной

Гамов не упомянул Вернадского в своей автобиографии «Моя мировая линия», но его космологическая идея обязана и науке Вернадского — геохимии, которая занимается распространенностью химических элементов на Земле. Вернадский понимал, что эта общая проблема включена в историю самой планеты, то есть в космическую историю Солнечной системы. Гамов, несомненно, слышал об этом в Радиевом институте, а в его первой статье о космологии 1946 года есть ссылка на книгу по геохимии, откуда он взял данные о распространенности элементов.

Гамов взялся за космологии, надеясь теоретически объяснить эти данные — объяснить происхождение химических элементов во Вселенной. В то время считалось, что нынешняя пропорция элементов зафиксировалась в некий ранний момент расширения Вселенной, когда — из-за уменьшения плотности и охлаждения — активные ядерные реакции прекратились. А до того момента, как считалось, имелось ядерно-тепловое равновесие между разными ядрами. Однако равновесные расчеты давали ничтожную долю тяжелых элементов, вопреки данным геохимии.

Гамов предположил иной — неравновесный — сценарий: в быстро расширяющейся Горячей Вселенной из первичного чисто нейтронного вещества при уменьшении плотности начинают образовываться протоны, к которым последовательно прилипают нейтроны, образуя все более тяжелые ядра, пока расширение Вселенной не остановит этот процесс. Эта идея Гамова оказалась очень плодотворной, хоть и… ошибочной. Ошибочной, потому что последовательное добавление нейтронов обрывается очень рано — не существует устойчивых ядер с массой 5, и перепрыгнуть через этот барьер не удавалось. А плодотворной стала сама возможность неравновесной физики.

Теоретики предполагали равновесие, в сущности, по той же причине, по которой потерянные ключи ищут под фонарем — там светлее и, значит, легче искать. Лучше все же сообразить, где примерно ключи могли выпасть, и искать там, хоть и ощупью. Так и условия ранней Вселенной лучше не постулировать «для простоты», а извлечь из них следствия, которые после сравнения с наблюдениями скажут нечто о процессах в начале космологического расширения. Так впоследствии получили соотношение легких элементов космологического происхождения — водорода и гелия, подтвердив предположение Гамова о том, что ранняя Вселенная была горячей.

Первыми же пользу из идеи неравновесности извлекли главные оппоненты Гамова — сторонники стационарной космологии. Они разработали теорию рождения тяжелых элементов во взрывах звезд, и ныне это — общепринятое представление о происхождении основного вещества планет, включая все живое. Уже поэтому космология имеет отношение к жизни. Без того чтобы взрывы первого поколения звезд в юной Вселенной накопили элементы тяжелее гелия, известная нам форма жизни была бы невозможна.

Однако сама стационарная космология не выдержала другого следствия из идеи Горячей Вселенной — космического реликтового излучения. Гамов и его сотрудники несколько раз оценивали температуру этого излучения, хоть и не для того, чтобы озадачить радиоастрономов своим предсказанием. Они хотели убедиться в разумности своего сценария: если получилась бы слишком большая температура, сценарий пришлось бы забраковать. Его забраковали, как уже сказано, по совсем другой причине, но представление о фоновом космическом излучении и его малой температуре жило своей жизнью и дождалось случайного открытия в 1965 году!

И Гамов дождался триумфа правильного следствия из его ошибочной идеи. Эту удачу он заслужил, расширив горизонт физического подхода к ранней Вселенной и не отступив от космологии Фридмана в трудное для нее время.

Подарок судьбы Андрея Сахарова

К Андрею Сахарову мировая слава пришла не за его научные достижения. Она на него обрушилась в 1968 году, сразу после того, как на Западе опубликовали его большую статью «Размышления о прогрессе, мирном сосуществовании и интеллектуальной свободе». Семь лет спустя его наградили Нобелевской премией мира за

«убедительность, с которой он провозгласил, что нерушимые права человека дают единственный надежный фундамент для подлинного и устойчивого международного сотрудничества» и за «бесстрашную личную приверженность к отстаиванию фундаментальных принципов мира между людьми».

Преображение секретного физика, «отца» советской водородной бомбы, в общественного деятеля и правозащитника озадачивало и западных наблюдателей, и тех, кто знал Сахарова со студенческих лет. Советским пропагандистам, однако, надлежало объяснить народу, что случилось с академиком, трижды Героем и лауреатом. Одно из объяснений звучало так: «Сахаров решил возместить прогрессировавшую научную импотентность лихим ударом в другой области».


Академик и трижды Герой Андрей Сахаров за вечерней партией шахмат с женой Клавдией, вторая половина 1960-х годов, когда Сахаров выдвинул свои главные научные и общественно-политические идеи.


На самом же деле в 1967 году — накануне «лихого удара в другой области» — Сахаров опубликовал две свои самые яркие чисто научные идеи. И это, укрепив его веру в свои силы, сыграло роль в его поворотном жизненном решении.

Его изобретательский талант и чувство ответственности отделили его от чистой науки почти на двадцать лет, то есть почти навсегда, если говорить о способности выдвинуть принципиально новую идею. Для него это был больной вопрос. Оглядывая свою жизнь, шестидесятилетний Сахаров в «рукописной беседе» с женой — укрываясь от ушей КГБ — написал о своем возвращении в чистую науку в «преклонные» сорок с лишним лет:

На самом деле, подарок судьбы, что я смог что-то сделать после спецтематики. Никому, кроме Зельдовича и меня, это не удалось. И в США тоже ни Теллер, ни Оппенгеймер не смогли вернуться к большой науке. Там исключение — Ферми. Но он быстро умер и он — гений.

Вернуться в чистую науку Сахарову помог общительный Зельдович. Уйдя из ядерного проекта в 1963 году, он Сахарову заменял участие в научных семинарах и общение с мировой наукой. И первую задачу в космологии Сахаров, можно сказать, получил из рук Зельдовича. Но решил он ее сам и запомнил день, когда это случилось, — 22 апреля 1964 года: «…Я вновь уверовал в свои силы физика-теоретика. Это был некий психологический разбег, сделавший возможными мои последующие работы тех лет».

Его новая уверенность видна в «программе на 16 лет», которую он составил для себя в 1966 году. Почему 16? Возможно, потому, что предыдущие 16 лет провел на Объекте — в секретном ядерном центре, в отрыве от высокой науки. Видимо, по той же причине программа включила в себя 16 проблем, начиная с солидной «Фотон + Гравитация» и кончая загадочным «Мегабиттроном».

Особого внимания заслуживает пункт 14 в этой программе. Правда, думая о сложных физико-математических материях, академик пропустил восьмой пункт. А значит, пункт 14 становится фактически 13-м, чем можно объяснить его особый характер. Похоже, поставив себе цель набрать 16 задач, Сахаров задумался в этом месте, поставил вопросительный знак и, вспомнив, что наука плохо поддается планированию, дописал: «Именно это я и буду, наверно, делать». Он оказался прав: «именно этим», незапланированным, он занялся в том же, 1966 году и даже уместил в этот пункт две самые яркие свои теоретические работы.