Кто — кого? — страница 16 из 52

Наверное, так или приблизительно так рассуждал Морзе. В результате этих рассуждений родилось еще одно замечательное изобретение — реле, которое в алфавит современной техники входит в качестве одной из первых букв.

Первая телеграмма, переданная с помощью этого аппарата из одного угла большого университетского зала в другой, гласила: «Успешный опыт телеграфирования 4 сентября 1837 года».

Отчетливо были видны зигзагообразные черточки на бумаге, сочетание которых соответствовало алфавиту, использовавшемуся тогда для сигнализации в военно-морском флоте; отлично работал специальный «ключ», изобретенный помощником Морзе — Альфредом Вэйлом для замыкания и размыкания электрической цепи. Но Морзе был недоволен: передача сообщения занимала много времени, а знаки подчас было очень нелегко расшифровать. Он почувствовал, что его аппарату нужен свой особый «почерк».

И опять потянулись дни и недели раздумий и поисков. В книжках рассказывается, что как-то вечером Морзе сказал своему молодому помощнику:

— Альфред, выбери в газете наугад какой-нибудь столбец, посмотри и посчитай, какая из букв встречается чаще других.

Альфред взялся за дело и вскоре ответил, что буква «е».

— Хорошо, — сказал Морзе. — В нашем новом алфавите мы ее будем обозначать «точкой». Какая буква после «е» встречается чаще других?

— «Т», — ответил Вэйл.

— Мы ее обозначим «тире», — заявил Морзе.

Последовательно они просмотрели весь алфавит, затем перешли к цифрам, знакам препинания. Так был изобретен, как рассказывают, телеграфный код — азбука Морзе, который без изменения используется и в наши дни в телеграфии и особенно в радиотелеграфии.

…Со дня памятного вояжа на «Салли» прошло уже шесть лет. Казалось, все было готово. Был создан телеграфный аппарат, были проведены успешные опыты, была изобретена новая удобная азбука. Однако понадобилось еще шесть долгих лет для того, чтобы построить первую телеграфную линию длиной около 60 километров, связывающую столицу США Вашингтон с городом Балтиморой.

Но и после этого новое изобретение не было признано полностью. Американский сенат отклонил просьбу Морзе о дальнейшем финансировании работ по постройке других линий. Отказ был вызван тем, что, по мнению департамента почт, телеграф был просто игрушкой, которая никак не могла окупить затраты на постройку линий.

Но это были слабые, а главное — запоздалые возражения.

Весь мир знал, что существует удобный способ передачи сообщений. Морзе был свидетелем того, как прокладывали подводные кабели, связавшие страны, разделенные морями и океанами, как телеграфная сеть опоясала весь мир. Он был награжден почетными медалями многих научных обществ и орденами многих европейских государств. И в то же время вокруг нового изобретения кипели страсти. То и дело возникали судебные разбирательства, связанные с установлением приоритета на это изобретение. А в числе многих претендентов был, в частности, и тот самый Чарльз Джексон, который на шхуне «Салли» показывал фокусы с электромагнитами.

Мало кому из изобретателей удалось присутствовать на открытии себе памятника. Это удалось Морзе в день его восьмидесятилетия в 1871 году. Точки и тире завоевали весь земной шар. Они несли миру войны и перемирия, людям радость и горе, надежду и спасение, несли информацию.

Паровая машина механизировала процессы передачи и преобразования энергии.

С изобретением телеграфа началась механизация процессов передачи и преобразования информации.

Вначале самим Морзе были механизированы передача сигналов по линии и их прием. Источником сигналов был человек-телеграфист. Работая телеграфным ключом, он то замыкал, то размыкал электрическую цепь. Движения его кисти преобразовывались в электрические сигналы; дальнейшая их передача происходила уже без непосредственного участия человека. Автоматически замыкались и размыкались реле на промежуточных станциях, электрические импульсы превращались в движения контактов реле; движения контактов — в электрические импульсы; так до конца линии, где импульсы превращались в отметки на ленте.

Телеграфная линия стоила дорого, а человек — телеграфист — работал сравнительно медленно. Посудите сами.

При передаче азбукой Морзе телеграфного текста вручную сигнал «точка» занимает приблизительно 1/24 секунды, сигнал «тире» — 1/8 секунды, промежуток между сигналами — 1/24 секунды, между буквами — 1/8 секунды, наконец, между словами — 1/4 секунды. Нетрудно подсчитать, что для передачи вручную, например, слова «телеграф» надо около 3 секунд. Если бы оператор работал как автомат, ни на минуту не отрывая руки от ключа телеграфного аппарата, не читая и в необходимой мере не осмысливая текст, то и тогда он смог бы передавать не больше чем 1500–2000 слов в час. Только поначалу этого казалось вполне достаточно. Телеграфист, как мальчик, стоявший у кранов паровой машины, ограничивал скорость действия аппарата, который мог бы работать значительно быстрее. Цепочку передачи и преобразования информации надо было полностью механизировать. И это было сделано с изобретением автоматического приемно-передающего телеграфного аппарата.

Теперь человек работает на специальной машине — перфораторе, напоминающем обычную пишущую машинку. Только вместо машинописного текста перфоратор выдает узкую бумажную ленту с пробитыми в ней отверстиями. Затем эта лента вводится в автоматический передатчик, который «прочитывает» ее и посылает сигналы в линию.

На двух концах линии стоят два автомата. Они «беседуют» с огромной скоростью, недоступной человеку; они одновременно говорят и одновременно слушают, и неопытному взгляду может показаться, что им вообще не нужен человек, скромно сидящий в стороне.

И язык, которым они говорят, уже не азбука Морзе. Удобная для руки и уха телеграфиста, она не устраивает автомат. Ему неохота запоминать целых три разных типа сигналов — точку, тире, промежуток. Он может пропустить очень много сигналов, только пусть они будут попроще. В общем пусть человек говорит на своем языке, а ему, автомату, нужен свой язык. Законное требование — и человек должен был его выполнить.


Код — слово мирное

Когда говорят «зашифровать», «закодировать», то в воображении возникает секретная-пресекретная комната за семью замками, где самые важные военные или дипломатические документы переписывают так, что их уже совершенно никто не может понять.

В технике эти слова имеют совершенно другой смысл. Они означают — перевести информацию с языка человека на язык машины. Люди говорят на разных языках, машины — тоже.

Примером тому может служить телеграф, о котором уже говорилось.

Электромагнитный принцип телеграфии был впервые предложен Ампером, которому подсказал эту мысль его старший товарищ и друг известный математик Пьер Лаплас.

Согласно предложению Ампера надо было для каждой буквы алфавита иметь отдельный провод с маленьким электромагнитом на конце. Это был самый простой, но и самый громоздкий механический язык.

Затем английский физик Чарльз Уитсон вместе с изобретателем Вильямом Куком построили телеграф, применив «только» пять проводов и пять магнитных стрелок; каждой букве соответствовало различное сочетание положений пяти магнитных стрелок, возбуждаемых токами, текущими по пяти проводам.

А немецкий физик Вильгельм Вебер и выдающийся математик Карл Гаусс — профессора Геттингенского университета обошлись уже одним проводом, одной стрелкой, которая, отклоняясь то вправо, то влево, передавала информацию. Каждой букве соответствовала разная комбинация ее поворотов вправо и влево. Этот «язык» оказался особенно удобным. В современных системах каждая буква передается в виде различных сочетаний пяти простейших сигналов — посылок тока и пауз — одинаковой длительности.

Французский механик Жан Бодо в 1876 году впервые построил телеграфный аппарат, использующий такой пятизначный код, который получил название кода Бодо. Этот код к настоящему времени стал общепринятым международным телеграфным кодом.

В течение многих лет шло усовершенствование перфораторов и автоматов для кодирования, передачи, приема и декодирования электрических сигналов применительно к задачам главным образом телеграфии. Но вот приблизительно с четверть века назад началось бурное развитие вычислительной техники. Понадобились автоматы, не только передающие и принимающие сигналы, как это делают телеграфные аппараты, но умеющие производить с ними различные логические и арифметические действия.

Появились сначала единицы, затем десятки и сотни, теперь тысячи электронных вычислительных машин-автоматов. Для них сырьем и готовой продукцией являются числа. Только числа! Миллионы чисел!

Одновременно продолжали развиваться телеграфия и телефония. Вот когда вопросы о кодировании информации, о скорости ее передачи и обработки, о различных системах счисления приобрели первостепенною важность не только с точки зрения маленькой кучки математиков, занимавшихся, как казалось сторонним наблюдателям, совсем «никчемушным» делом, но и с точки зрения целой армии инженеров и ученых, придумывающих различные системы связи и вычислительные машины. Быстрыми шагами началось развитие теории информации, которая должна отвечать на эти вопросы и сотни других.

Какая система счисления наиболее удобна, когда речь идет об автоматической передаче информации, об автоматизации действий над числами, о числовом управлении автоматами?

Техники и математики нашли ответы на эти вопросы. Но чтобы не просто поверить, а понять смысл их ответов, надо разобраться, какими способами можно записать любое число.

Тем, кто не знаком с современной вычислительной техникой, такое занятие может показаться странным. Действительно, ведь хорошо известно, что любое число может быть записано с помощью десяти различных цифр — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Этими цифрами и составленными из них числами мы пользуемся в повседневной жизни. С них начинаются первые уроки в школе, с ними мы сталкиваемся дома, на работе, на улице. Нам известны правила, по которым их можно складывать и вычитать, умножать, делить. Мы легко оперируем всеми 10 символами, которыми обозначены 10 цифр, и наша десятичная система счисления кажется нам очень простой и удобной.