И в самом же сердце скрывается система управления этим биологическим двигателем, заставляющая с точностью часового механизма биться сердце 100 тысяч раз в сутки.
В едва видимом комочке ткани, в так называемом синусном узле, расположенном в задней стенке правого предсердия, 72 раза в минуту возникает короткий электрический импульс. Распространяясь по мышечным тканям предсердий, он вызывает их сокращение.
Возбуждение достигает второго — предсердно-желудочкового — узла, где происходит задержка импульса на 0,05–0,07 секунды, в течение которых заканчивается сокращение предсердий. Из второго узла возбуждение распространяется в течение нескольких сотых долей секунды на мышечную ткань обоих желудочков, вызывая их одновременное сокращение. Затем следует интервал — расслабление, после которого возникает очередная «искорка», управляющая работой всего сердца.
Раз за разом по сердечной мышце растекаются биотоки, и живой насос мощно перекачивает кровь.
Ученые уже давно научились записывать биотоки работающего сердца. На электрокардиограмме четко видны все фазы этого периодического процесса. Вот возникает небольшая волна (во всем мире ее обозначают латинской буквой P): это работают предсердия. Затем импульс передается желудочкам, на кардиограмме это отражается «выплеском» QRS. На протяжении всего интервала T сокращаются желудочки, а затем наступает период расслабления — отдых.
Миллиарды сердец бьются, поддерживая жизнь миллиардов людей. Каждый удар, каждый цикл работы сердца протекает по одним и тем же законам, одну и ту же кривую должен писать автомат электрокардиограф, регистрирующий биотоки сердца. Любые изменения в электрокардиограмме настораживают врача, помогают ему обнаружить неисправности в работе сердца и понять их причины. Таких неисправностей, врожденных и «благоприобретенных», могут быть десятки и сотни, но природа закладывает в свои конструкции очень высокую степень надежности.
Точно установлено, что сердце продолжает качать кровь, даже если омертвеет большая часть ткани сердечной мышцы.
Стенки правого желудочка могут быть полностью разорваны, его вообще можно исключить из цепи кровообращения — и все равно кровь будет течь в легкие.
Сердечные клапаны могут подтекать меньше или больше — сердце будет работать.
Синусный узел перестанет генерировать управляющие сигналы — его функции возьмет на себя предсердно-желудочковый узел, — сердце будет работать, по возможности лучше приспосабливаясь к своим собственным дефектам.
Ни одно техническое устройство не может действовать, имея подобные дефекты; ни одну из своих конструкций человек не может сделать с такой высокой степенью надежности.
Но как ни надежно сердце, бывает, что и оно нуждается в срочном, сверхсрочном ремонте.
…Над операционным столом склонились несколько человек. Один из них, тот, кому больной вручил свою жизнь, отдает отрывистые приказы, которые молниеносно выполняют его помощники. Уже вскрыта грудная полость и перед людьми в белых халатах бьется живое человеческое сердце. Но кто еще, кроме хирурга, осмелился нарушить напряженную тишину операционного зала? Откуда вдруг появился мерный шум? Это рядом с людьми начал работать автомат — искусственное сердце, которое на время операции заменит живое сердце, требующее вмешательства хирурга.
В две вены, по которым кровь возвращается в правое предсердие, введены трубки, и теперь, вместо того чтобы течь в правый желудочек, кровь течет в состоящее из трубок и помп искусственное сердце, прокачивающее ее через искусственные легкие, где происходят процессы насыщения крови кислородом и очищения ее от углекислоты, аналогичные тем, что идут в настоящих легких.
Затем кровь самотеком поступает в спиральный резервуар. Если в ней останется хотя бы один пузырек газа, то он осядет на стенках первого же витка спирали.
Спиральный резервуар помещен в сосуд с подогретой водой, благодаря чему поддерживается необходимая температура крови, которая из резервуара поступает на вход помпы и из нее через трубку — в артериальную систему человека. Эта кровь проходит нормальный путь по организму человека, поступает в вены и оттуда снова в автомат.
Освободив сердце от выполнения основной обязанности и осушив его, хирург имеет возможность и время, чтобы произвести такой ремонт и исцелить больного от таких недугов, которые десять лет назад казались абсолютно неизлечимыми.
В настоящее время уже существуют и применяются несколько различных конструкций автомата «искусственное сердце-легкие». Без вредных последствий для больного ими можно поддерживать искусственное кровообращение минуты, часы. Считают, что в недалеком будущем их можно будет применять по многу часов и даже дней.
Но постоянно действующее искусственное сердце — извечная мечта врача и поэта — еще долго будет оставаться мечтой. Гарри Джонс из рассказа Лема пока имеет все основания утверждать, что искусственное сердце, изготовленное для него фирмой «Кибернетикс компэни», по габаритам, весу, эффективности и надежности похоже на естественное сердце не больше, чем кочерга на деву Марию.
Помимо внутренних органов, Гарри Джонс потерял конечности. Посмотрим, что в этом отношении можно для него сделать сейчас, и тогда, может быть, станет яснее, на что он может рассчитывать в обозримом будущем.
Чтобы заглянуть вперед, нам придется вернуться в один из осенних дней октября 1956 года. Поздний вечер, но в лаборатории еще горит свет. Близится конец года, а с ним и время отчета. Автор отчета сидит за столом, заваленным папками, книгами, чертежами. Целый год в лаборатории шли испытания макета станка с цифровым управлением, целый год сигналы программы превращались в электрические импульсы, а электрические импульсы — в перемещения инструмента и заготовки. Теперь наступила пора сравнить то, что было построено и испытано, с тем, что было задумано и спроектировано. На столе разложены осциллограммы, на которых записаны импульсы и перемещения.
Страшно интересно знать, что получилось, а тут, как на грех, в лаборатории сидит гость — сотрудник другого института — и обстоятельно, не торопясь, рассказывает о результатах своей работы в области, совсем далекой от интересов автора отчета. В его рассказе речь идет о новых механизмах протеза предплечья, о методах их расчета и проектирования. Механизм всегда остается механизмом, встроен ли он в автомат или в протез, в нем всегда много интересного, и постепенно беседа оживляется.
— Я понял, как действует ваш протез, — говорит хозяин, — и думаю, что исследовать его движения можно обычными методами. Одно только мне непонятно — ведь движениями протеза предплечья управляет здоровая часть руки, мышцы плеча. Как зарегистрировать момент начала сокращения соответствующих мышц?
— Электрофизиологи уже давно умеют это делать, — говорит гость. — Они записывают биотоки мышц руки примерно так же, как в поликлиниках записывают электрокардиограмму; при записи так называемых миограмм они прикладывают электроды на участок кожи над соответствующей мышцей.
— И что показывают эти миограммы?
— Когда мышца расслаблена, сигнала почти нет. Чем больше мышца напряжена, тем сильнее биоэлектрические импульсы. Я не знаю в подробностях их методик. Если хотите, приезжайте к нам в институт. Думаю, что наши физиологи с удовольствием вас с ними познакомят, а сейчас, может быть, нам лучше вернуться к вопросам анализа механизмов протезов…
— Подождите минуту! — вскакивает хозяин. — Ведь мы уже несколько лет занимаемся автоматом, движением механизмов которого управляют электрические импульсы. Вот они, у нас перед глазами. Программы движения, записанные в виде черточек на киноленте, черточек, которые превращаются в управляющие импульсы. А биотоки мышц — это, выходит, тоже программы движения! Так, может быть, их можно использовать не только для исследования мышечной деятельности? Может быть, биоэлектрический сигнал можно применить, например, для целей управления техническим устройством?
Биоэлектричество, отведенное от живого организма, управляет машиной?! Для такой системы так и напрашивается название — «биоэлектрическая система управления»!
Выпучив глаза и затаив дыхание, собеседники с минуту молча смотрели друг на друга. Человек привык все новое прежде всего примерять и приспосабливать к привычному, хорошо знакомому. И после паузы гость вопросительно произнес:
— Если вы утверждаете, что такая система сумеет чем-нибудь управлять, то, может быть, ее можно приспособить для управления протезом?
Помните, читатель, в главе «Точка, тире» вам предлагалось подумать о том, как можно было бы использовать аналогию в способах передачи информации по нервной сети живого организма и коммуникациям технического устройства? Идея биоэлектрического управления полностью вытекает из этой аналогии. Кратко ее можно высказать так:
«Программу» действия живого организма мозг зашифровывает в виде потоков электрических импульсов и направляет их затем по нервной сети ко всем исполнительным органам.
Но ведь и программу работы многих машин также зашифровывают и направляют к исполнительным механизмам в виде потоков электрических импульсов!
Само собой разумеется, что природа сигналов в обоих случаях различна. Но это ведь не мешает принять такой способ сигнализации в качестве единого кода для живого существа и технического устройства, когда они должны тесно взаимодействовать между собой.
В описанной выше беседе была сформулирована идея, но этого, конечно мало. Ее нужно было сделать зримой, овеществить. И вновь появился тот самый конструктор в очках с толстыми стеклами, с которым мы познакомились в главе «Заколдованный треугольник».
Физиология для инженера — темный лес. Жизнерадостный физиолог с круглым лицом и прищуренными глазами, излучающими улыбку, был в этом лесу, как у себя дома.
А в ящиках с электрофизиологической аппаратурой копался неторопливый радиоинженер.