Кто вы? — страница 5 из 38

М = 0,01. Позднее были обнаружены планеты еще у 11 двойных звезд. Изучение двойных звезд и планет утвердило точку зрения, что нет, по-видимому, принципиального различия в происхождении двойных звезд и планетных систем. Отсюда следует, что если двойные звезды весьма распространены в природе, то и планетные системы не должны составлять редких исключений.

Далее, изучение момента количества движения для звезд главной последовательности приводит к любопытному заключению. Момент количества движения есть произведение трех параметров звезды: массы, экваториальной скорости и радиуса.

При переходе от спектрального класса А к спектральному классу F (см. рис. на стр. 22) наблюдается странно резкое уменьшение момента количества движения звезд. Согласно земным законам физики, а их справедливость для вселенной в основном доказана, изолированная система не может сама изменить свой момент количества движения. Отсюда возникает логическое предположение — по мере изменения температуры звезд и перехода их в спектральный класс F у них имеет место процесс образования планет. Породившая планеты звезда отдает заметную часть своего момента количества движения планетам. На примере солнечной системы мы видим, что, хотя суммарная масса всех планет составляет только 1/700 солнечной, 98 процентов всего момента солнечной системы связаны с движением планет и только 2 процента с вращением Солнца. Малая скорость вращения Солнца на экваторе (2 метра в секунду, то есть в 15 раз меньше, чем скорость Земли на орбите) есть следствие сравнительно большого удаления планет от Солнца и больших скоростей их движения.

Несмотря на то, что процесс образования планет, связанный с изменением моментов звезд, пока не ясен, наблюдаемый факт резкого изменения моментов звезд является весомым аргументом в пользу распространенности планетных систем во вселенной.

Таким образом, наше Солнце — рядовая звезда Галактики со своим блестящим эскортом из 9 планет — не является в этом смысле чем-то уникальным: планетные системы у звезд распространенное явление во вселенной.

Но далеко не все орбиты планет лежат в «зоне жизни» своей звезды, где есть температурные условия для зарождения и развития жизни.


Зона жизни

Живой организм — сложная и нежная система. Он гибнет и при очень высокой и при очень низкой температуре. Жизнь может существовать только в ограниченном интервале температур. Вокруг каждой звезды можно очертить зону, где это условие выполняется. Чем больше масса звезды, тем выше ее температура (для звезд главной последовательности) и тем больше эта зона, которую называют «зоной жизни». Зона эта отстоит тем дальше от своего светила, чем больше его масса. Как у костра: чем он сильнее пылает, тем дальше мы отходим от него, но тем больше зона, где приятно греться.



Глубокие исследования зон жизни провел Су Шу Хуанг, американский ученый. По его вычислениям, звезды большой массы живут так мало на главной последовательности (хотя это миллиарды лет!), что на их планетах эволюция неживой материи в живую и ее дальнейшее развитие не успевает произойти. С другой стороны, звезды нижней ветви главной последовательности имеют столь малую массу, а следовательно, низкую температуру и узкую зону жизни, что вряд ли орбиты планет находятся в этой узкой зоне.

Если провести эту зону для солнечной системы, то в нее попадают Венера, Земля и Марс. При этом орбита Венеры лежит около внутренней границы, а орбита Марса вблизи внешней границы зоны жизни.

В итоге Хуанг выделяет из звезд главной последовательности, отбросив звезды с очень большой и очень малой массой, группу с наибольшими шансами на зарождение и развитие живой материи. Это звезды средних размеров трех спектральных классов на диаграмме «спектр — светимость» (см. рис. на стр. 22), а именно: звезды класса F, звезды класса G и звезды класса K. По счастливому совпадению все эти звезды вращаются медленно. Они, по-видимому, отдали свой момент вращения планетам при их образовании. А так как звезды этого класса имеют значительные зоны жизни, то, вероятно, часть их планет должна лежать на орбитах внутри этой зоны. Первый любопытный факт — наше Солнце, звезда спектрального класса G, лежит точно в центре этой группы. Второй любопытный факт — орбита планеты Земля лежит в средней части зоны жизни Солнца.

Определенный интервал температур является необходимым условием жизни, но далеко не единственным. Известные нам сегодня формы живой материи не могут существовать без воздуха и воды.


Вода плюс воздух

Наиболее вероятное место зарождения жизни — это океан (тут и «питательный бульон», и защита от жесткого излучения — см. ниже). Наличие гидросферы на планете является одним из условий зарождения жизни. Но чтобы удерживать воду на своей поверхности, планета должна быть достаточно велика.

Те же соображения относятся и к атмосфере. При очень маленькой массе планеты воздушная оболочка из кислорода не может существовать — она улетучится.

С другой стороны, очень большая масса планеты также может воспрепятствовать возникновению эволюции жизни из-за огромной величины силы тяжести. Следовательно, планеты с очень малой или очень большой массой должны быть исключены из рассмотрения. Расчеты Хуанга показывают, что с точки зрения удержания атмосферы с кислородом радиус планет должен лежать в интервале 1000–20 000 километров. Это отнюдь не значит, что все планеты с таким радиусом обитаемы. Но он указывает на возможность жизни. Кроме того, имеет значение и ряд других факторов. Один из них — химический состав планеты. Например, маловероятно возникновение жизни на планете, не содержащей таких элементов, как углерод.

Читатель, наверное, и не подозревал, что необходимо так много условий для зарождения жизни. По счастливой случайности все они с надежным запасом имеются на Земле. Мы к ним настолько привыкли, что не замечаем их удивительного сочетания.

Теперь, вооруженные полученными знаниями, мы можем сделать следующий шаг: оценить число таких счастливых сочетаний в окружающих Землю просторах. Начнем с «ближней зоны». Во-первых, очертим сферу ну, скажем, радиусом в 16 световых лет вокруг нашей солнечной системы (число это взято произвольно). Во-вторых, попытаемся оценить вероятность выполнения в ней условий, необходимых для развития жизни.


Плачь, скрипка моя, плачь…

Чем меньше расстояние от нас до ближайшего очага цивилизации, тем, естественно, быстрее и легче установить контакт с ее создателями.

Фантасты давно заселили все ближайшие небесные тела — Луну, Марс, Венеру, Сатурн и т. д. разумными обитателями, облик которых чаще всего списан с землян с теми или иными вариациями. Здесь же нам, как это ни грустно, придется развеять миф о столь близком соседстве с обитателями иных миров. Грусть эта вполне понятна. Так же как человек — «животное общественное» — тяготеет к коллективу, так, по-видимому, и любая цивилизация, достигнув определенного уровня развития, тяготеет к иным цивилизациям, к контакту с ними.

Если отрешиться от фантастики и стать на научную почву, то сегодня никто всерьез не ожидает найти разумную жизнь еще где-нибудь в пределах солнечной системы. Сказанное не исключает возможность обнаружения следов угасших цивилизаций, например, на Марсе. Но это уже иной разговор, это уже сфера науки будущего — «космической археологии».

Исследования планеты Венера блестяще подтвердили эту мысль (температура у поверхности 350–400 градусов Цельсия выше нуля, а атмосфера состоит почти из одного углекислого газа). Поэтому свой взор мы должны обратить к ближайшим звездам, к соседям Солнца.

Анализируя «небольшую» зону, окружающую солнечную систему, радиусом в 16 световых лет, Су Шу Хуанг пришел к следующему. С точки зрения достаточного количества тепла и света ближайшая к нам звезда альфа Центавра, находящаяся от нас на расстоянии 4,3 светового года, вряд ли имеет «орбиты жизни». Она является тройной, и невозможно представить орбиту планеты, освещаемую тремя солнцами, с необходимыми устойчивыми температурными условиями.

Всего в очерченной нами сфере к настоящему времени обнаружено 47 звезд. Среди них четыре — Сириус, Альтаир, Процион и альфа Центавра — хорошо видны невооруженным глазом, еще шесть звезд можно с трудом различить без астрономических труб, остальные же 37 звезд можно обнаружить только в телескоп.

Сириус и Процион оказались двойными звездами и должны быть исключены из рассмотрения по тем же соображениям, что и альфа Центавра.

Если исключить звезды-карлики спектрального класса M, которые дают слишком мало тепла (Хуанг допускает, что у этих звезд может случайно появиться планета с орбитой малого радиуса внутри зоны жизни, но считает это событие маловероятным), то остаются только две звезды «на подозрении»: эпсилон Эридана и тау Кита. Созвездия, к которым принадлежат эти звезды, показаны на приведенном рисунке. Обе эти звезды находятся на расстоянии 11 световых лет. Их яркость приблизительно в три раза меньше солнечной.



Заметим, что ряд астрономов и до работ Хуанга отмечали звезду тау Кита как звезду, подобную Солнцу и, возможно, имеющую обитаемые планеты.

Как мы увидим дальше, именно с этой звезды начались первые эксперименты на Земле по поиску сигналов от обитателей других миров.

Таким образом, вероятность наличия жизни в этом радиусе весьма мала, но отнюдь не исключена. Существенное увеличение вероятности может дать поиск в радиусе порядка сотен световых лет, где число звезд резко возрастает.

Но… есть еще одна смелая мысль, которая, быть может, заметно изменит сделанные оценки. Кроме «детей солнца» или «детей своей звезды», возможно, существуют и «дети тьмы» или «дети, не имеющие своей звезды».


Дети тьмы