О мощных пылевых бурях на Марсе впервые заподозрили благодаря телескопическим наблюдениям XIX века, и автоматизированные исследовательские космические программы, проводимые в Соединенных Штатах и Советском Союзе с 1960-х годов, подтвердили эту гипотезу. Орбита Марса вытянута. Во время лета в южном полушарии планета на 9 % ближе к Солнцу, чем в среднем за год, а во время зимы в южном полушарии, соответственно, на 9 % дальше от Солнца, чем в среднем за год. Такое сочетание ожидаемого летнего нагрева с дополнительным теплом, получаемым из-за сезонной близости к Солнцу, приводит к тому, что южное полушарие Марса подвержено экстремальным сезонным колебаниям температуры (а в северном полушарии, где все в противофазе, сезоны более умеренные). Во время сверххолодной южной зимы диоксид углерода из атмосферы в больших количествах осаждается на южной полярной шапке (которая состоит из водяного льда, покрытого слоем сухого льда) и поглощается антарктическим реголитом. Этот дополнительный слой замороженного и адсорбированного диоксида углерода затем вырывается обратно в атмосферу, когда в начале южного лета происходит сильный нагрев южных полярных областей. Это внезапное увеличение количества углекислого газа в атмосфере планеты настолько значительно, что атмосферное давление поднимается примерно на 12 % за несколько месяцев (годичное сезонное изменение давления почти в два раза больше), вызывая сильные ветра, которые подхватывают и переносят значительное количество пыли. Поэтому пылевые бури возникают в начале южного лета недалеко от южного полюса, а затем распространяются на север, иногда так далеко, что охватывают всю планету. Скорость ветра во время бурь достигает значения между 50 и 100 километров в час. Бури, которые повторяются периодически все южное лето, постепенно прекращаются с приходом южной осени. Как и в случае с погодой на Земле, тут действует фактор случайности: в некоторые годы бурь практически не бывает, а в другие они охватывают всю планету практически все южное лето. Однако в общем ясная погода в северном полушарии наступает весной, летом и осенью.
Вот и весь рассказ, и он устрашает. Действительно, в ноябре 1971 года, когда орбитальный аппарат США «Маринер-9» и советские зонды «Марс-2» и «Марс-3» достигли Марса, на нем бушевала глобальная пылевая буря. Четыре месяца поверхность планеты была полностью недоступна из-за пыли, и «Маринер-9» ничего не видел. Миссии «Маринер-9» это почти не повредило – аппарат просто ждал на орбите, когда погода наладится, и затем без затруднений приступил к фотографированию планеты. А вот советские спускаемые аппараты ждала другая судьба. Они были заранее запрограммированы на высадку рядом с 45° южной широты, туда они и направились, спускаясь на парашютах прямо в сердце водоворота. Оба были уничтожены.
Хотя спуск с парашютом в марсианскую пылевую бурю – явно плохая идея, все сильно меняется, если к началу пылевой бури вы уже будете на поверхности Марса. Толщина марсианской атмосферы составляет около 1 % от толщины земной атмосферы,[22] и, следовательно, динамическое давление, создаваемое марсианским ветром при скорости 100 километров в час, эквивалентно скорости ветра 10 километров в час (6 узлов) на Земле. Спускаемые аппараты миссий «Викинг-1» и «Викинг-2», а также роверы «Спирит» и «Оппортьюнити» долгие годы работали на поверхности (расчетный срок их жизни составлял 90 дней), и все они перенесли множество пылевых бурь за время своей работы. Несмотря на это никакого ущерба «Викингам», или роверам, или любому из их инструментов бури не нанесли. Кроме того, хотя пылевая буря ухудшает видимость поверхности с орбиты, локальная видимость на поверхности ухудшается незначительно. Пыль действительно уменьшает уровень освещенности, примерно как облака в пасмурный день на Земле, но для наблюдателя на поверхности Марса окружающая местность остается хорошо видна. Если речь идет о постройках, оснащенных солнечными батареями, снижение уровня освещенности из-за пылевых бурь может вызвать некоторые проблемы. Но, поскольку фотоэлектрические панели способны преобразовывать в электричество даже рассеянный пылью свет (непосредственное попадание солнечного света на панели не обязательно), потери энергии будут не очень значительными. Можно ожидать, что во время типичной сильной пылевой бури солнечные батареи будут вырабатывать примерно на 50 % меньше энергии. Таким образом, при условии что система питания обеспечивает достаточную мощность для минимального функционирования системы жизнеобеспечения на то время, пока длится буря, все должно быть в порядке. Конечно, если основную часть энергии производит либо ядерный реактор, либо радиоизотопный генератор или если большой запас энергии доступен в виде химического топлива, произведенного на Марсе (которое можно сжечь в двигателе внутреннего сгорания, чтобы включить генератор), эта проблема становится неактуальной.
Некоторые специалисты высказывали обеспокоенность тем, что пыль, поднятая во время бури, может осесть на солнечных батареях или других оптических поверхностях, таких как окна или инструменты. С этой проблем не столкнулись ни автоматические роверы, ни миссия «Викинг». Действительно, солнечные батареи «Спирита» и «Оппортьюнити» многократно очищались сильными ветрами. По-видимому, общее количество пыли, поднимаемой бурями, невелико. Для пилотируемой марсианской миссии это, конечно, не будет большой проблемой. Если солнечная панель покрылась пылью, есть простое решение: нужно послать на улицу кого-то с метлой!
Подводя итог, скажу, что пылевые бури представляют опасность только для легких объектов, которые подвержены действию аэродинамических сил (из-за большой парусности): например, воздушных шаров или спускаемых модулей с тормозными парашютами. Если посадочный модуль не использует парашют для посадки (его могут заменить высотные буйки), а спускаемому модулю «Марс Директ» парашют как раз не нужен, он пройдет через пылевую бурю так же легко, как самолет пролетает через облако. Конечно, большинство пилотов предпочло бы высаживаться на Марс в условиях полной видимости, и именно поэтому миссия «Марс Директ» предусматривает тормозной захват космического аппарата для его вывода на орбиту Марса перед посадкой. Если по прибытии хаба погода на месте посадки будет плохой, экипаж просто может дождаться окончания бури на орбите, как сделал «Маринер-9». Однако оказывается, что с 2016 до 2025 года траектории Земля – Марс для каждого года запуска могут быть выбраны так, чтобы корабли прибыли на Марс в течение сезона ясной погоды.
Пылевые бури не помешают нам добраться до Марса.
Обратное загрязнение
Последний из пяти драконов, паразитирующих на картах возможных исследователей Марса, – даже не иллюзия, а скорее, галлюцинация. Это предполагаемая угроза обратного загрязнения.
Суть вот в чем: ни один из земных организмов никогда не взаимодействовал с марсианскими организмами, и поэтому у нас нет иммунитета к заболеваниям, вызываемым марсианскими патогенами. Пока мы не будем уверены, что на Марсе нет вредных болезней, мы не имеем права рисковать здоровьем экипажа. Вдруг он заразится какой-нибудь болезнью, способной его убить, а то и уничтожить после возвращения на Землю не только человечество, но и всю земную биосферу.
Приведенный выше аргумент можно мягко назвать полным бредом. Ведь если на Марсе есть или когда-либо были организмы, то Земля уже взаимодействовала и продолжает взаимодействовать с ними. Причиной тому миллионы тонн вещества марсианской поверхности, которое за последние миллиарды лет откалывалось от поверхности Красной планеты при метеорных ударах, и значительное количество этого вещества побывало в космосе и попало на Землю. Мы знаем это наверняка, потому что ученые собрали почти 100 килограммов метеоритов определенного вида, называемых «SNC-метеориты» [22], и сравнили изотопный состав находок и марсианского грунта, который был проанализирован с помощью спускаемых аппаратов «Викинг». Отношение количества разных изотопов одного и того же элемента (например, азота-15 к азоту-14), а также тот факт, что газ, содержащийся в метеоритах, совпадает по составу с марсианской атмосферой, представляют собой неопровержимые доказательства того, что эти породы возникли на Марсе. Хотя каждый SNC-метеорит должен путешествовать в космическом пространстве миллионы лет до прибытия в Землю, эксперты по исследованию метеоритов считают, что ни длительные странствия в глубоком вакууме, ни повреждения, связанные с начальным выбросом с Марса либо пролетом в атмосфере Земли, не способны стерилизовать эти объекты, если они изначально содержали бактериальные споры [23]. Действительно, химический анализ известного SNC-метеорита ALH84001 (см. Специальное дополнение) показал, что часть его вещества никогда не нагревалась выше 40 °C за все время межпланетного путешествия, и поэтому, если в нем когда-либо были бактерии, они легко бы пережили путешествие. Далее, на основании количества марсианского вещества, найденного на Земле, было подсчитано, что в год его на нашу планету падает около 500 килограммов. Поэтому, если вы боитесь марсианских микробов, лучше всего побыстрее покинуть Землю, потому что, когда начнется бомбардировка метеоритами, содержащими марсианскую жизнь, земным видам несдобровать. Но не паникуйте – метеориты не так опасны. На самом деле к сегодняшнему дню единственным известным существом, пострадавшим от марсианского обстрела, является собака, которая был убита одним из падающих камней в Нахле, Египет, в 1911 году. По статистике, вероятность того, что на голову пешехода выбросят мебель из окна верхнего этажа, гораздо выше.
Но главное, что жизнь на поверхности Марса почти наверняка отсутствует. Там нет (и не может быть) жидкой воды – средняя температура на поверхности и атмосферное давление не позволяют ей существовать. Кроме того, планета покрыта окисленной пылью и в придачу купается в ультрафиолетовом излучении. И пероксиды, и ультрафиолетовое излучение на Земле обычно используются после обеззараживания. Уж если жизнь и есть на Марсе сейчас, то она почти наверняка должна быть укрыта в месте с исключительными условиями, например в нагретом гидротермальном резервуаре под поверхностью.