Эти блоки уже работали по 28 000 часов без обслуживания, что примерно в четыре раза больше, чем планируемая продолжительность марсианской экспедиции. Для подводных лодок блоки ТПЭ делаются очень тяжелыми – это нужно для балластировки, – для космических полетов они должны быть гораздо легче.
Если весь водород пойдет на производство топлива посредством реакций (1) и (2), то каждый его килограмм, привезенный на Марс, будет преобразован в 12 килограммов двухкомпонентного топлива из метана и кислорода (в соотношении 2:1 соответственно). Сжигание такой смеси обеспечит удельный импульс около 340 секунд. Этот показатель можно было бы назвать хорошим, но оптимальное соотношение кислорода и метана – около 3,5:1, такая пропорция дает удельный импульс в 380 секунд, а массовое отношение водорода к двухкомпонентному топливу в таком случае будет 18:1.
Это наилучший уровень производительности, какого можно достичь для реализации пилотируемой миссии «Марс Директ». Но он требует дополнительного источника кислорода, кроме того, который дают реакции (1) и (2). Одно из возможных решений – прямое восстановление двуокиси углерода:
2CO2 → 2СО + O2 (3)
Эту реакцию можно осуществить, нагрев двуокись углерода примерно до 1100 °C, что приведет к частичной диссоциации газа, после чего произведенный свободный кислород можно будет под напряжением пропустить через циркониевые керамические мембраны и тем самым отделить от остального газа. Использовать эту реакцию для производства кислорода на Марсе впервые предложил доктор Роберт Эш из ЛРД в 1970 году и с тех пор это было и остается предметом исследований как самого Эша (который сейчас работает в Университете Старого Доминиона), так и Кумара Рамохали и К. Р. Шридхар (из Университета штата Аризона). Преимущество данного химического процесса – то, что он полностью отделен от любых других и позволяет произвести неограниченное количество кислорода без какого-либо дополнительного исходного сырья. К недостаткам можно отнести то, что трубки из циркония крошатся и дают небольшой выход продукта, потому для миссии «Марс Директ» их понадобится очень много. Также для этого процесса требуется примерно в пять раз больше энергии, чем при производстве того же объема кислорода с помощью электролиза воды. Недавно исследователи из Университета штата Аризона сообщили, что им удалось увеличить выход реакции, так что ее имеет смысл рассматривать в качестве перспективной, но все еще экспериментальной.
Альтернативой, которая позволит удержать все процессы строго в рамках промышленной химии эпохи газового освещения, будет известная инженерам-химикам реакция конверсии водяного газа, запущенная в обратном порядке: повторное использование некоторого количества водорода (полученного в блоке электролиза) в третьей камере, где он вступит в реакцию с диоксидом углерода в присутствии железно-хромового или медного катализатора. Этот процесс даст на выходе окись углерода и воду:
CO2 + Н2 → СО + Н2O (4)
Реакция (4) слегка эндотермическая, но протекает она при 400 °C, что хорошо укладывается в температурный режим реакции Сабатье. Если проводить реакцию (4) одновременно с (1) и (2), то можно получить смесь с искомым соотношением метана и кислорода, а вся энергия, необходимая для реакции (4), будет добыта из тепла, выделяемого в реакторе Сабатье. Реакцию (4) можно проводить в простой стальной трубе, что делает конструкцию довольно надежной. Недостатком здесь является то, что в интересующем нас температурном интервале реакция (4) имеет константу равновесия всего около 0,1, а это означает, что для поддержания процесса придется запустить конденсатор и мембранный сепаратор, чтобы постоянно удалять из реактора воду и окись углерода, а затем с помощью насоса возвращать в камеру непрореагировавшие водород и диоксид углерода и повторно их использовать. (Вода и СО – это продукты, стоящие в правой части уравнения (4); пока они непрерывно удаляются, реакция сообразно химическим принципам будет течь вправо с образованием воды и СО, чтобы поддерживать соответствующую равновесную концентрацию в реакторе.) Такая система была впервые продемонстрирована мною и Брайаном Фрэнки в «Пионер Астронотикс» в 1997 году, причем с последующими улучшениями нам удалось достичь почти полного превращения диоксида углерода и водорода в СО и воду. При запуске реактора обратной конверсии водяного газа (ОКВГ) параллельно с циклом реакции Сабатье и электролиза можно легко добиться такого соотношения метана и кислорода в топливе, которое будет оптимальным для использования в ходе миссии «Марс Директ».
Более элегантное решение заключается в простом объединении (1) и (4) в одном реакторе следующим образом:
3CO2 + 6 Н2 → СН4 + 2СО + 4 Н2O (5)
Эта слабоэкзотермическая реакция, и если запустить ее вместе с (2), смесь кислорода и метана будет иметь пропорцию 4:1, что даст оптимальное соотношение масс компонентов топлива 18:1, причем кислорода окажется даже больше, чем нужно, – его можно будет использовать как запас для системы жизнеобеспечения. Кроме того, продуктом реакции окажется окись углерода, теоретически пригодная для различных двигателей внутреннего сгорания или топливных элементов. Если учесть весь произведенный запас окиси углерода и кислорода, общее соотношение масс компонентов топлива может достигать 34:1!
В проекте, проведенном для НАСА между 2005 и 2007 годами, «Пионер Астронотикс» продемонстрировала этот цикл в действии с самого начала и до конца с помощью системы, которая брала из емкости газ, близкий по составу к марсианскому «воздуху» и содержащийся под давлением в 8 мбар, сжимала его до 3 бар, применяла сборную реакцию (5) для получения метана, оксида углерода и воды, затем подвергала последнюю электролизу для производства кислорода и водорода (он снова отправлялся в реактор), очищала от СО метан и сжижала его. Было показано, что этот реактор – который начал разрабатывать Тони Мускателло, а завершили Дуве Бруинсма и его коллеги, после того как Тони ушел из «Пионер Астронотикс», чтобы занять пост в Космическом центре имени Кеннеди, – способен производить метан и кислород в любом соотношении, работая при автоматизированном управлении до пяти дней без остановок.
Еще один способ добычи необходимого кислорода состоит в том, чтобы просто взять часть метана, полученного в реакции (1), и разложить в процессе пиролиза на углерод и водород:
СН4 → С + 2Н2 (6)
Полученный таким образом водород будет затем снова использован для взаимодействия с местным углекислым газом в реакции (1). Через некоторое время в камере, где проводилась реакция (6), накопится какое-то количество графита (сегодня это самый распространенный на практике метод промышленного получения пирографита). Поступление метана в реактор будет прекращено, вместо него камеру заполнит горячая газообразная двуокись углерода. Она начнет вступать в реакцию с графитом с образованием СО, который затем будет отводиться из камеры.
CO2 + С → 2СО (7)
Использовать две камеры – одну для пиролиза, другую для очистки – мне предложили как самое простое решение проблемы с дополнительным кислородом Джим Макэлрой и его исследовательская группа из «Гамильтон Стандарт».
Дело в том, что записать на бумаге систему химического синтеза как серию уравнений легко, куда труднее построить модуль, работающий должным образом. Однако к реактору, о котором я вам рассказал, это не относится – я знаю наверняка, потому что сам руководил рядом проектов по созданию всех блоков ЗПТМ с нуля. Первый и в некотором роде наиболее драматичный из этих проектов был начат осенью 1993 года, когда Дэвид Каплан и Дэвид Уивер из Космического центра имени Линдона Джонсона НАСА спросили меня, сможет ли «Мартин Мариетта» продемонстрировать рабочую модель ЗПТМ, которую я пропагандировал на конференциях и в статьях. Однако в той истории произошла неприятность: НАСА выделило всего 47 тысяч долларов на мой проект, а это очень маленький бюджет для того, чтобы разработать и продемонстрировать новую аэрокосмическую технологию, к тому же мне следовало закончить к январю 1994 года. Это было достаточно рискованно – в «Мартин Мариетта» 47 тысяч долларов обычно платят за презентацию с парой десятков слайдов. Однако я твердо верил в то, что технология проста и что проект, кажущийся нереализуемым при имеющемся бюджете и сроках, в принципе осуществим. После долгих обсуждений с руководством я принял вызов. В октябре 1993 года «Мартин Мариетта» заключила контракт на выполнение работы, Дэвид Каплан возглавил программу, Стив Прайс был назначен руководителем проекта со стороны «Мартин Мариетта», а я выступал в качестве главного исследователя и ведущего инженера.
Конструкция системы была разработана в октябре 1993 года, и большую часть ноября мы ждали, пока нам пришлют детали. К концу месяца мы получили все необходимые компоненты и принялись за строительство завода в натуральную величину согласно требованиям миссии по доставке марсианского грунта.
Реактор Сабатье создали с нуля, заполнив металлическую трубу 36 сантиметров в длину и 5 сантиметров в диаметре рутениевым катализатором, полученным от некой компании, поставляющей химическое сырье. (Позже выяснилось, что мы взяли его в десять раз больше по объему, чем требовалось для системы, но мы были стеснены жесткими сроками, которые не позволяли нам делать что-либо дважды. Поэтому проектирование с запасом показалось нам хорошим вариантом.) Электролизер, имевший длину всего в 25 сантиметров и весивший 3 килограмма вместе с водой, был взят из устройства для производства водорода в лаборатории «Паккард Инструмент». Мы также добыли нихромовые нагреватели, чтобы довести реактор Сабатье до рабочей температуры (в дальнейшем тепло, выделяемое в ходе химических реакций, должно было поддерживать его горячим без использования электричества). Наконец, мы построили систему конденсации, чтобы отделять произведенный метан от произведенной воды, а затем испытали всю систему, включая датчики давления и температуры и измерители расхода газа, установленные в стратегических точках и подключенные к компьютеру. К середине декабря система была завершена и готова к работе.