Курс на Марс. Самый реалистичный проект полета к Красной планете — страница 46 из 78

у что вам придется поднять на поверхность, а затем засыпать обратно около 260 000 тонн грунта. Естественный кратер нужного размера дал бы вам большое преимущество, но очень маловероятно, что вы сможете отыскать такой, и уж тем более вы не найдете двух или большего количества подходящих естественных углублений, которые бы располагались на предполагаемом месте базы.


Рис. 7.2. Методы строительства куполов на поверхности Марса: а) закопана половина сферического купола; б) нижняя половина купола имеет радиус кривизны вдвое больше, чем верхняя; в) укрепление купола в виде шатра; г) сферический жилой комплекс с кевларовыми перекрытиями, полностью расположенный над поверхностью (рисунок Майкла Кэрролла)


Впрочем, можно обойти эту неприятность, если делать верхнюю и нижнюю половины купола с различным радиусом кривизны. Сравните две монеты разного достоинства, и вы поймете, что я имею в виду. Монета большего размера имеет больший радиус. Дуга, которую вы проведете вдоль ее края, будет гораздо более пологой, чем дуга вдоль монетки поменьше. Поэтому, чтобы долго не копаться в грунте, мы могли бы вместо целого полушария расположить под поверхностью секцию с большим радиусом кривизны, чем у верхней половины купола (рис. 7.26). Так, если конструкция над поверхностью почвы – это полноценное полушарие 50 метров в диаметре (с радиусом кривизны 25 метров), а внизу предполагается расположить секцию с радиусом кривизны 50 метров, то вместо полусферического котлована глубиной 25 метров достаточно будет выкопать яму глубиной всего 3,35 метра, а количество перемещаемой туда-обратно почвы с 260 000 тонн уменьшится до 6500. Последняя цифра делает предложенную идею весьма заманчивой. Если задействовать оборудование, способное извлекать один самосвал (20 кубических метров) почвы в час, работа над котлованом займет 48 часов.

Еще один вариант – использовать полусферический тент. Если в случае со сферическим куполом нужно погрузить в грунт его нижнюю половину, то в случае с тентом достаточно будет укрепить шатер на поверхности, закопав его кольцеобразный край («юбку») глубоко под землей (рис. 7.2в). Однако это по-прежнему потребует значительных экскаваторных работ, так как купол 50 метров в диаметре, заполненный атмосферой под давлением 5 фунтов на квадратный дюйм, будет испытывать направленную вверх силу в 6926 тонн, пытающуюся оторвать его от поверхности планеты. Это 44 тонны на метр окружности. Таким образом, если «юбку» купола закреплять на полосе шириной 3 метра вдоль всей окружности купола, то при плотности грунта в четыре раза больше, чем у воды, закапывать придется на глубину в 10 метров, иначе вся конструкция может улететь. Для этого нужно будет вырыть траншею шириной 3 метра, глубиной 10 метров и 157 метров в окружности, опустить туда «юбку» купола и засыпать ее, для чего придется переместить 18 800 тонн грунта. Впрочем, того же эффекта можно добиться, проделав значительно меньший объем работы: вырыть относительно узкий и мелкий круговой желоб (скажем, 1 метр в ширину и 3 метра в глубину – для этого придется переместить всего 1900 тонн грунта), уложить в него «юбку», а затем закрепить ее длинными, глубоко забитыми кольями. Если последние сделать полыми и пустить сквозь них горячий пар, они вмерзнут в массив льда и надежно закрепят купол на месте.

Четвертый вариант – взять опять же сферу, но не закапывать, а подвесить перекрытия на кевларовых кабелях, окружающих конструкцию, как параллели – глобус (рис. 7.2 т). Если использовать сферу 50-метрового диаметра, то первое перекрытие можно расположить на 4 метра выше основания сферы, следующее – на 7 метров, затем на 10, 13 и так далее через каждые 3 метра до пятнадцатого перекрытия, которое окажется на 46 метров над поверхностью. Общая жилая площадь рассматриваемой структуры будет огромной, около 21 000 квадратных метров. Из-за природы конструкции она не должна быть сильно нагружена, поэтому нужно использовать легкие перегородки, сделанные из материала вроде звукопоглощающего пенопласта, чтобы разделять этажи на квартиры, лаборатории, кафе, тренажерные залы, аудитории и т. п. Доступ внутрь помещения может осуществляться через туннель, ведущий к шлюзу в «южном полюсе» сферы. Укладка грунта вдоль ее основания поможет распределить нагрузки, создаваемые весом конструкции. Центральная колонна из кирпича увеличит несущую способность каждого перекрытия и позволит использовать лифт. Поскольку такая свободно стоящая сфера будет больше возвышаться над марсианской поверхностью, нежели другие рассмотренные нами варианты, для ее защиты понадобится куда больший негерметичный геодезический купол из оргстекла (впрочем, он будет весить всего около 16 тонн).

Мы видим, что создание крупных обитаемых куполов на поверхности Марса зависит от освоения новых методов гражданского строительства в новой среде. Так, первые марсианские строения могут сильно напоминать римскую архитектуру с преобладанием простых кирпичных сводов под поверхностью. Однако, как только удастся освоить необходимые технологии изготовления материалов и строительства, можно будет быстро произвести и развернуть сети куполов диаметром от 50 до 100 метров, тем самым сделав большие площади поверхности пригодными для жизни и сельскохозяйственных работ без использования скафандров. Внутри укрепленных на поверхности куполов (см. рис. 7.2) люди могли бы жить в домах более-менее привычных конструкций (за исключением того, что не будет надобности в крышах), изготовленных из, разумеется, кирпича. В случае с сельскохозяйственными участками купола получится сделать гораздо более легкими, так как растениям требуется атмосферное давление не больше 0,7 фунта на квадратный дюйм. Действительно, из-за более низких требований к давлению и надежности, вполне вероятно, марсианские купола впервые будут возведены для создания тепличного хозяйства и только потом станут использоваться для больших открытых поселений на поверхности.

Производство пластмассы

Как заметил друг семьи персонажа, которого играл Дастин Хоффман в фильме «Выпускник», главные вещи в современной жизни сделаны из пластмассы. Окружи себя пластмассой – и твое будущее гарантировано, мой мальчик! Что ж, поскольку Марс, как и Земля, обладает огромными запасами природного углерода и водорода, возможностей окружить себя пластиком там тоже предостаточно.

Ключ к производству пластмасс на Марсе – синтез этилена, который сам по себе может быть произведен в расширении реакции обратной конверсии водяного газа (ОКВГ), рассмотренной в главе 6 в качестве средства для получения кислорода.

Н2 + CO2 → H2O + СО (1)

Мы можем использовать эту реакцию для получения всего того объема кислорода, который только понадобится нам на Марсе, соединяя марсианский атмосферный диоксид углерода с водородом, избавляясь от монооксида углерода, подвергая полученную воду электролизу а затем запасая кислород. Водород мы будем использовать повторно, чтобы получить еще больше воды и, соответственно, больше кислорода. Впрочем, можно поступить несколько иначе. Если использовать водород и диоксид углерода не в соотношении 1:1, как это сделано в уравнении (1), а в соотношении 3:1, мы получим вот что:

2 + 2CO2 → 2Н2O + 2СО + 4Н2 (2)

(Да, я знаю, что мог бы разделить все части уравнения (2) пополам, и все было бы точно так же, но потерпите немного.) Далее следует взять воду, произведенную с помощью уравнения (2), и конденсировать. Может, мы подвергнем ее электролизу, может, не подвергнем – это зависит от того, что нам нужнее, собственно вода или водород и кислород по отдельности. Куда важнее то, что мы сделаем с прочими продуктами, после того как избавимся от воды. Если мы захотим, то направим оставшуюся смесь окиси углерода и водород в другой реактор, где в присутствии катализатора с железной основой они прореагируют следующим образом:

2СО + 4Н2 → С2Н4 + 2Н2O (3)

Ура! С2Н4 – это этилен, отличное топливо и ключ к нефтехимической и пластмассовой промышленности. Реакция (3) весьма экзотермическая и, как и производящая метан реакция Сабатье (см. главу 6), может быть использована в качестве источника тепла для эндотермической реакции ОКВЕ. Также она имеет высокую константу равновесия, что делает возможным получение большого выхода этилена. Однако обычно протекают и побочные реакции, результатом которых становится пропилен (С3Н6) – тоже отличное топливо и ценное сырье для производства пластмассы. А вот высшие углеводороды вроде парафина, производящиеся в процессе побочных реакций, – уже не так хорошо, поскольку они могут вызывать проблемы, если не удалять их из продукта. Хотя эта система и более сложная, она имеет важные преимущества над простой реакцией Сабатье.

Во-первых, этилен включает только два атома водорода на один атом углерод, в то время как метан – четыре. Таким образом, если использовать этилен в качестве топлива вместо метана, понадобится завозить с Земли вдвое меньше водорода или добывать в два раза меньше воды.

Во-вторых, точка кипения этилена (при давлении в одну атмосферу) -104 °C, что значительно выше, чем у метана (-183 °C). При давлении в несколько атмосфер этилен можно хранить без охлаждения при средних температурах окружающей среды, тогда как критическая для метана температура ниже тех, что обычно бывают по ночам на Красной планете. Потому этилен можно сжижать на Марсе без использования криогенного оборудования, тогда как метан – нельзя. Это сокращает энергию, необходимую на охлаждение системы для производства топлива на этилене и кислороде, примерно вдвое относительно энергозатрат на охлаждение системы для производства метан-кислородной смеси. Также это значительно устраняет необходимость изолировать топливные баки и делает работу с полученной смесью во всех отношениях проще.