Курс на Марс. Самый реалистичный проект полета к Красной планете — страница 47 из 78

В-третьих, плотность жидкого этилена на 50 % больше, чем плотность жидкого метана, что позволяет использовать более компактные и потому более легкие топливные баки для марсианского взлетного модуля или роверов для поверхности Марса. В-четвертых, этилен может применяться не только как топливо или для сварки. Он используется в качестве обезболивающего, как агент для созревания фруктов и как средство сокращения времени покоя для семян. Все эти особенности будут очень полезны для создания базы на Марсе. Но как бы чудесно ни звучало сказанное, это ерунда по сравнению с главным назначением этилена и пропилена: изготовлением полиэтилена, полипропилена, а также множества других видов пластика. Из этих материалов можно делать пленку или ткань для создания больших надувных конструкций (в том числе жилых куполов), а также для производства одежды, сумок, изоляции, шин и др. Пластмассы могут быть очень плотными и твердыми, пригодными для изготовления емкостей – как маленьких, так и огромных, – посуды, инструментов, инвентаря, медицинского оборудования и бесчисленного множества других небольших, но необходимых объектов, а также жестких конструкций любого размера и формы, прозрачных и непрозрачных. На основе пластиков могут быть изготовлены смазки, герметики, клеи, ленты – список почти безграничен. Развитие производства пластмасс на основе этилена на Марсе, таким образом, откроет широчайшие перспективы для заселения планеты.

Пластмассы, конечно же, – один из основных материалов, использующихся в современной жизни. Они могут быть произведены на Марсе благодаря тому, что там есть углерод и водород. Этот факт должен заставить задуматься тех, кто считает, что Луна более перспективна в плане заселения. На Луне нет доступного углерода и водорода в сколько-нибудь значимых количествах, кроме как в чрезвычайно холодных, постоянно находящихся в тени полярных кратерах, концентрация этих элементов на естественном спутнике Земли примерно такая же, как концентрация золота в морской воде. Производство дешевого пластика на Луне никогда не станет возможным. На самом деле пластмассы там еще очень длительное время будут в буквальном смысле на вес золота.

Изготовление керамики и стекла

Глинистые минералы настолько часто встречаются в марсианских грунтах, что производство керамики не составит проблем. Однако наиболее распространен на Марсе, согласно данным посадочных модулей «Викинг», диоксид кремния – SiO2. Он занимает около 40 % веса в пробах грунта, взятых обоими аппаратами. Этот минерал – основной материал для изготовления стекла, так что его легко будет получать на Марсе, плавя песок – так же, как это делалось на Земле на протяжении тысяч лет. Однако есть и плохая новость для марсианской стекольной промышленности: второе по распространенности соединение на Красной планете (около 17 % в образцах «Викингов») – оксид железа, Fe2O3. И это действительно проблема. Если вы хотите производить стекло для высококлассной оптики, песок, используемый в качестве исходного сырья, не должен содержать железа, а такой довольно трудно найти на Марсе. Так что оксид железа придется как-то удалять. Это можно сделать, соединив его с горячей окисью углерода из «отходов» реактора ОКВГ и тем самым восстановив до металлического железа и диоксида углерода, а затем удалив металл магнитом. Я согласен, процедура довольно утомительна, но в результате у вас останется железо, пригодное для других целей, например для изготовления стали, речь о которой пойдет далее в этой главе. Скорее всего, поскольку базе почти наверняка понадобится гораздо больше стали, чем оптического стекла, вскоре после появления литейного цеха недостатка в очищенном от железа сырье для стекольной промышленности уже не будет. Однако следует отметить, что стекло оптического качества вовсе не нужно для производства многих важных изделий, включая стекловолокно, отличный материал для возведения различных типов строений.

Использование воды

В уме марсианина постоянно будет один вопрос, преобладающий над всеми вопросами рабочей силы, женского избирательного права и восточным вопросом, вместе взятыми, – вопрос воды. «Как добывать достаточное количество воды, чтобы поддерживать жизнь?» – вот какова будет величайшая общественная проблема.

Персиваль Лоуэлл. Марс, 1895

Персиваль Лоуэлл ошибался во многом, но, разумеется, проявил прозорливость в своем замечании относительно воды на Марсе. Все возможности сделать Красную планету доступной для освоения и заселения, которые мы обсуждали до сих пор, зависят от воды: это производство топлива для ракет и роверов, кислорода для синтеза пластмасс, кирпича, строительного раствора и керамики, а также выращивание сельскохозяйственных культур, устранение утечек воздуха и укрепление почвы с использованием искусственной мерзлоты. Хотя мысль о том, чтобы постоянно возить воду на Марс, кажется чрезвычайно непривлекательной, в первых нескольких миссиях мы можем позволить себе получать воду, используя всего 11 % водорода, доставленного с Земли, в сочетании с кислородом, добытым из диоксида углерода марсианской атмосферы. Когда начнется этап создания базы, нам придется двигаться дальше. Возросшие требования к количеству топлива, вытекающие из увеличения уровня человеческой деятельности, множество новых сфер применения машин, а также стоящие выше всего нужды сельского хозяйства – все это сделает спрос на воду намного большим, чем можно удовлетворить, получая ее из «земного» водорода. Если человеческая цивилизация когда-нибудь разрастется на Марсе, нам придется найти способ получать воду на месте.

Если мы проявим должную мудрость, то разобьем базу неподалеку от места, где можно найти воду. Она должна быть легко доступна. Если вы сегодня посмотрите на Марс, вы увидите большую область с пониженным рельефом в районе северного полюса, где очень мало кратеров. Считается, что когда-то давно это огромное углубление было заполнено водой – она-то и защищала поверхность планеты от метеоритов первый миллиард лет или около того. Последнее, что осталось от древнего океана, – северная полярная шапка, которая состоит из водяного льда (по современным оценкам, там содержится около 2 миллионов кубических километров воды [30]). Европейский орбитальный аппарат «Марс Экспресс» также обнаружил заполненные водяным льдом кратеры в северном полушарии [31]. Но это лишь известные источники чистой воды. Картографируя планету с орбиты с использованием гамма– и нейтронного спектрометров, космический аппарат НАСА «Марс Одиссей» обнаружил в обоих полушариях области размером с континент, где грунт на поверхности содержит по весу от 40 до 60 % воды. На полученных с орбиты изображениях мы видим, что север Марса отличается гораздо большим количеством сухих русел рек и ручьев, чем юг. Вполне вероятно, что во времена, когда вода текла по этим каналам в последний раз, в устьях остались запасы льда или вечная мерзлота. Они могут существовать до сих пор, скрытые от нашего взора слоем пыли. Измерения влажности атмосферы, проведенные с орбиты, также не оставляют сомнений, что северное полушарие куда богаче водой, чем южное, а самое влажное время года на Марсе – северная весна. То, что на севере планеты когда-то было относительно много воды, имеет значение для будущих колонистов еще и по другой причине. Гидрологическая деятельность – ключевой фактор для формирования большого разнообразия минеральных руд. Если бы журналист Хорас Грили жил на Марсе, его совет молодым марсианам, ищущим свое счастье, был бы прост: «Идите на север».

Есть целый ряд возможных способов получить воду на Красной планете. Первый, наиболее привлекательный, но самый проблемный метод – просто найти ее. Как обсуждалось в главе 6, на Марсе могут существовать подповерхностные геотермальные водоемы жидкой воды. Если они есть, их вполне реально обнаружить на глубине до километра от поверхности, используя роверы, оснащенные почвопроникающими радарами. Экипажам не придется кататься по планете наудачу. Радарные исследования низкого разрешения, проводящиеся с орбиты, или с самолетов, или с аэростатных зондов, помогут заранее определить лучшие места для поиска воды. Подсказки могут дать и метановые шахты, которые в случае их обнаружения указывали бы на подповерхностную гидротермальную активность (и, возможно, на наличие на планете жизни!), а еще изображения вроде тех, что были предоставлены зондом «Марс Глобал Сервейор», которые помогут увидеть истечения воды из уступов скал и кратеров, имевшие место в недавнем прошлом. Если мы найдем такой бассейн и пробурим к нему шахту, горячая вода под давлением начнет вырываться из-под земли, как нефтяные фонтаны на месторождениях в Техасе. Когда она соприкоснется с холодной разреженной марсианской атмосферой, то не сможет долго оставаться горячей. В зависимости от скорости истечения вода, вероятно, замерзнет и опадет на поверхность. Таким образом, моментально может образоваться снежный вулкан значительных размеров. Впрочем, добыча воды таким эффектным способом будет расточительной, потому что гидротермальная скважина – это еще и отличный источник энергии. В том же, что касается доступа к воде, не может быть ничего лучше, чем сооружение базы рядом с горячей артезианской скважиной.

Конечно, не факт, что дела пойдут так хорошо. Мы можем и не найти жидкой воды под поверхностью в пределах бурового диапазона. Что тогда? Что ж, в таком случае удачной находкой могут оказаться рассолы. Насыщенные солевые растворы остаются жидкими при низких температурах – до -55 °C, а это значит, что даже без геотермального тепла такие рассолы, защищенные от испарения небольшим слоем почвы или льда, могут существовать на Марсе очень близко к поверхности. В дополнение к тому, что соляные бассейны содержат много воды, они еще представляют большой интерес и как места, где могла бы сохраниться марсианская жизнь. До сих пор рассолы на Марсе обнаружены не были,