еты. Давление солнечного света сбалансирует притяжение планеты, позволяя зеркалу парить как «статит»,[31] а вырабатываемая энергия постоянно будет направляться на южную полярную область [48]. Рабочая высота для паруса предложенной плотности составит 214 000 километров. Идея статита-отражателя и размер зеркала, необходимый для того, чтобы спровоцировать рост полярной температуры, приведены на рис. 9.8 и 9.9.
Рис. 9.8. Солнечные паруса с плотностью 4 тонны на квадратный километр можно стационарно удерживать над Марсом давлением излучения на высоте 214 000 километров. Расход небольшого количества света позволит избежать затенения
Рис. 9.9. Солнечные паруса-зеркала с радиусами порядка 100 километров и массами в 200 000 тонн способны поднять температуру на 5 °К и тем самым вызвать испарение CO2 в южной полярной шапке Марса. Такие зеркала мы можем построить в космосе
Если значение Td меньше 20 °К, то самостоятельного высвобождения полярных запасов углекислого газа может быть достаточно, чтобы вызвать испарение резервов реголита и нарастающий парниковый эффект. Однако представляется вероятным, что если Td превысит 20 °К, то нам придется добавить сильные парниковые газы в атмосферу, чтобы вызвать глобальное повышение температуры, достаточное для создания ощутимого атмосферного давления на Марсе.
Производство галогенуглеводородов на Марсе
Наиболее очевидный способ повысить температуру на Марсе – построить заводы по производству самых сильных парниковых газов, известных человеку, то есть галогенуглеводородов, или CFC, и распространить их в атмосфере. На Земле CFC обвиняют не только в создании парникового эффекта, но и в разрушении озонового слоя. Однако, если мы будем выбирать наши галогенуглеводородные парниковые газы тщательно и использовать разновидности, не содержащие хлора, мы можем создать защищающий от ультрафиолетового излучения озоновый слой для марсианской атмосферы. Одним из хороших кандидатов на роль такого газа будет перфторметан, CF4, который также отличается стабильностью в верхних слоях атмосферы (сохраняется в течение более чем 10 000 лет). В таблице 9.2 мы приводим количество галогенуглеводородных газов, которое необходимо выпустить в атмосферу, чтобы обеспечить заданный рост температуры, и количество энергии, которая позволит произвести требуемые CFC в течение двадцати лет. Если эти газы имеют срок жизни в атмосфере, равный ста годам, то примерно одна пятая часть уровня мощности, указанного в таблице, потребуется для поддержания концентрации CFC после того, как она будет накоплена. Промышленные усилия, связанные с таким уровнем энергии, будут значительными, поскольку будет производиться несколько десятков тонн чистого материала каждый день и потребуется задействовать несколько тысяч рабочих на Марсе. Может понадобиться уровень мощности около 5000 МВт, что примерно совпадает с количеством энергии, которое использует сегодня большой американский город, например Чикаго. В общей сложности бюджет проекта может составить несколько сотен миллиардов долларов. Тем не менее, если рассмотреть все аспекты, такой проект вряд ли окажется неподъемным для человечества середины XXI века.
Биологическое решение
Мы потратим гораздо меньше усилий на создание парникового эффекта на Марсе, если обратимся к нашим биологическим помощникам. Такой подход к терраформированию отстаивал покойный Карл Саган, начиная с 1960-х годов, когда предположил, что Венеру можно было бы сделать более пригодной для жизни, если посеять в ее атмосферу водоросли, которые бы потребляли углекислый газ и тем самым уменьшали адский парниковый эффект на планете [49]. Идея, скорей всего, неработоспособная, но в поздних исследованиях Марса Саган и его коллега Джеймс Поллак выяснили, что существуют бактерии, которые могут потреблять азот и воду и производить аммиак [50]. В атмосфере Марса азот присутствует в незначительных количествах, но его богатые запасы могут обнаружиться в нитратных залежах реголита. Другие бактерии умеют соединять воду и углекислый газ в метан. И аммиак, и метан являются отличными парниковыми газами, в тысячи раз более мощными, чем двуокись углерода, хотя и не такими эффективными, как галогенуглеводороды. Если запустить парниковый эффект полярными зеркалами или производством CFC и тем самым обеспечить циркуляцию некоторого количества жидкой воды, мы, вероятно, сможем создать на поверхности планеты бактериальную экосистему, которая ускорит процесс благодаря выделению больших количеств аммиака и метана. В самом деле, если бы 1 % поверхности планеты был покрыт такими бактериями (а мы предполагаем, что они работают с эффективностью около 0,1 %, преобразуя энергию солнечного света в химические соединения), то ежегодно производилось бы около миллиарда тонн метана и аммиака. Этого достаточно, чтобы нагреть планету на 10 °К примерно за тридцать лет.
Таблица 9.2. Создание парникового эффекта на Марсе с помощью галогенуглеводородов (CFC)
Кроме того, аммиак и метан будут защищать поверхность планеты от солнечного ультрафиолетового излучения. Хотя в процессе аммиак и метан будут непрерывно разрушаться, так как типичная молекула имеет срок жизни в атмосфере в несколько десятилетий. Но бактерии постоянно будут их заменять. Также по мере нагревания планеты и дегазации диоксида углерода из реголита озоновый слой Марса будет утолщаться, обеспечивая дополнительное УФ-экранирование и для поверхности, и для аммиака и метана в атмосфере. (Углекислый газ способствует образованию озона. В самом деле, Марс в настоящее время имеет озоновый слой[32] толщиной около 1/60 толщины земного, что довольно хорошо, если считать, что толщина его атмосферы всего 1/120 от земной.)
В считаные десятилетия, используя комбинацию из этих подходов, можно преобразовать Марс из сухой ледяной пустыни в относительно теплую и слегка влажную планету, на которой мы сумеем поддерживать жизнь. Воздух преобразованного Марса не станет подходящим для дыхания, но людям больше не понадобятся скафандры, можно будет свободно передвигаться в обычной открытой одежде и простом дыхательном приспособлении типа акваланга. Кроме того, поскольку атмосферное давление удастся довести до приемлемого для людей уровня, можно будет строить для людей огромные жилые помещения под надувными куполами, содержащие пригодный для дыхания воздух. (Купола могут быть неограниченного размера, потому что они не будут страдать от перепада давления между их внутренней и внешней средой, как во время строительства базы.) С другой стороны, простые выносливые растения могут процветать за пределами жилых помещений в среде, богатой углекислым газом, и быстро распространиться по всей поверхности планеты. С течением веков эти растения будут внедрять кислород в марсианскую атмосферу в возрастающих количествах, пригодных для дыхания, и тем самым создавать приемлемые условия для более сложных растений и животных. Содержание диоксида углерода в атмосфере при этом станет уменьшаться, а планета – остывать, пока не будут введены парниковые газы, способные блокировать те участки инфракрасного спектра, которые ранее блокировал диоксид углерода. Рано или поздно настанет день, когда в куполообразных тентах не останется необходимости.
Активация гидросферы
Первые успехи в терраформировании Марса, нагрев планеты и уплотнение ее атмосферы, могут быть достигнуты удивительно скромными средствами, например, использованием галогенуглеводородных газов местного производства с некоторой помощью бактерий. Уровень содержания кислорода и азота в атмосфере, однако, будет слишком низким для многих растений, и, если не предпринять мер, планета останется довольно сухой, так как при небольшом повышении температуры понадобятся столетия, чтобы расплавить льды и глубоко похороненную вечную мерзлоту Марса. Именно на этом втором этапе терраформирования Марса активируется гидросфера, атмосфера становится пригодной для сложных растений и примитивных животных, а температура продолжает расти, и в этом, вероятно, все более важную роль будут играть изготовленные в космосе крупные солнечные концентраторы. Быстро активировать гидросферу нам позволит использование орбитальных зеркал.
Например, если бы зеркало радиусом 125 километров, которое мы собирались использовать для испарения полярной шапки, сконцентрировало полученную им энергию на меньшей области, это дало бы 27 ТВт энергии, чтобы растопить озера (один тераватт, или ТВт, равен одному триллиону ватт). Этого достаточно, чтобы растопить 2 триллиона тонн воды в год (озеро со стороной 200 километров и 50 метров в глубину). Одно такое зеркало поможет нам перевести огромное количество воды из вечной мерзлоты в нарождающуюся марсианскую экосистему. Чем быстрее начнет циркулировать вода, тем активнее станет деятельность денитрифицирующих бактерий по разрушению нитратного слоя Марса, а значит, в атмосферу будет поступать все больше свободного азота и станет больше растений, производящих кислород. Активация гидросферы также поспособствует разрушению окисляющих химических соединений в марсианском реголите (которые, как показали данные миссии «Викинг», неустойчивы в присутствии воды), и в процессе в атмосферу будет высвобождаться дополнительный кислород. Таким образом, хотя проектирование и производство таких зеркал потребуют от нас грандиозных усилий, пользу от полученных десятков тераватт энергии трудно переоценить.
Наполнение атмосферы планеты кислородом
Самая сложная в технологическом плане задача – наполнить атмосферу Марса таким количеством кислорода, которое позволяет поддерживать животную жизнь. В то время как бактерии и простейшие растения могут выжить без кислорода, более сложные растения требуют давления по крайней мере 1 мбар, а людям нужно 120 мбар. Несмотря на то что в марсианском реголите, вполне вероятно, содержатся супероксиды или нитраты, которые можно нагреть, чтобы высвободить кислород и азот в виде газов, процесс потребует огромного количества энергии, примерно 2200 ТВт. лет на каждый произведенный миллибар. Подобные количества энергии потребуются и растениям, чтобы выделять кислород из диоксида углерода. Однако у растений есть преимущество: если их однажды посадили, они могут разрастаться и размножаться. Поэтому производство кислородной атмосферы на Марсе распадается на две фазы. На первом этапе используются инженерные методы грубой силы, дополненные распространением для начала цианобактерий и примитивных растений для получения достаточного количества кислорода (около 1 мбар), чтобы затем сделать возможным распространение более сложных растений по всему Марсу. Если предположить, что у нас будут три космических зеркала 125-километрового радиуса и достаточные запасы необходимых материалов на поверхности Марса, мы получим желаемый результат примерно за двадцать пять лет. Есть и другой способ: количество кислорода, дающее давление в 1 мбар, может быть добавлено в атмосферу примерно за век благодаря деятельности фотосинтезирующих бактерий.