должны были быть какие-то бактерии, причем именно с Земли. Настоящий вопрос заключается в том, что стало источником бактерий. Мы вскоре вернемся к этому.
Но, доказав присутствие «магнитных ископаемых» в ALH84001, команда Фридмана доказала существование в прошлом не просто жизни, а конкретной ее формы, чувствительных к магнитному полю микроорганизмов. Сейчас на Земле чувствительные к магнитному полю бактерии используют свои маленькие компасы, позволяющие перемещаться вверх и вниз, чтобы достичь места, где концентрация кислорода в жидкой среде подходит им лучше всего. Поэтому появились они только тогда, когда концентрация кислорода в атмосфере достигла значительного уровня – примерно 2,3 миллиарда лет назад. Читатели, которые знакомы с геологической историей, могут удивиться. В конце концов, хорошо известно, что фотосинтезирующие цианобактерии появились на Земле около 3,5 миллиарда лет назад. Почему на нашей планете так долго не начинался процесс обогащения кислородом? Причина в том, что фотосинтез, осуществляемый ограниченным количеством примитивных цианобактерий, не мог превзойти способность тектонических плит Земли возвращать фиксированное количество углерода в атмосферу в виде углекислого газа.
Выводы Фридмана, таким образом, говорят о том, что на Марсе свободный кислород присутствовал в значительных количествах более чем за миллиард лет до того, как он стал доступен на Земле. Это не слишком удивительно. Так как Марс по размеру меньше Земли, его тектоническая активность значительно слабее, сегодня она фактически почти отсутствует. Таким образом, Красная планета не возвращала в атмосферу биологически связанный углерод так же эффективно, как это происходило на Земле, и это могло дать примитивным цианобактериям шанс заполнить атмосферу планеты кислородом гораздо быстрее.
И вот начинается самое интересное. Исследования подтверждают, что скорость эволюции на Земле коррелировала с концентрацией кислорода в атмосфере. Между этими факторами существует четкая статистическая корреляция, но также между ними существует и логическая причинно-следственная связь. Наличие кислорода обеспечивает течение более энергичных химических реакций и, следовательно, существование более энергичных и сложных организмов. Например, если мы рассмотрим развитие животных, то каждое из этих сложных, дышащих кислородом существ представляет собой огромную систему дышащих кислородом ядерных клеток. Эти ядерные клетки, или эукариоты, сами представляют собой сложно организованные наборы подсистем, таких как митохондрии (клеточные генераторы энергии), которые когда-то в далеком прошлом были свободноживущими бактериями. Согласно ныне общепринятой теории, известной как симбиогенез, разработанной биологом Линн Маргулис из Бостонского университета, считается, что сложные ядерные клетки, из которых состоят все высшие животные и растения, сами возникли из колоний бактерий, эволюционировавших так, чтобы специализироваться на различных видах деятельности. Следовательно, бактерия имеет такое же отношение к животной (или растительной) клетке, как одноклеточные животные к многоклеточным животным [64].
При исследовании окаменелостей и геологических профилей было определено, что появление клеток, использовавших митохондрии, коррелирует с повышением концентрации атмосферного кислорода в диапазоне от 1 до 2 % нынешнего атмосферного уровня. Хлоропласты (органеллы, то есть специализированные структуры клетки, осуществляющие фотосинтез) появились примерно 2 миллиарда лет назад, когда уровень кислорода вырос до 5 % от современного. Около 600 миллионов лет назад, когда уровень кислорода возрос примерно до 20 % от нынешнего, многоклеточные животные ворвались на сцену с внезапностью, из-за которой их появление стали называть «кембрийским взрывом».
Значимость соотношения между уровнями атмосферного кислорода и марсианской эволюции была впервые выявлена астробиологом Крисом Маккеем в серии смелых статей, опубликованных в 1996 году [65, 66]. В этих статьях Маккей утверждал, что мы не должны воспринимать темпы эволюции на Земле как единственно возможную модель. Земле понадобились 3,2 миллиарда лет с окончания периода тяжелой астероидной бомбардировки, который начался 3,8 миллиарда лет назад, чтобы произвести многоклеточную жизнь, но так как скорость эволюции обусловлена присутствием кислорода, на Марсе этот процесс предположительно мог пойти гораздо быстрее. Теплый и влажный период юности Марса длился всего около 1 миллиарда лет, прежде чем атмосфера из CO2 разредилась и планета потеряла свой благотворный парниковый эффект. На Земле эволюция, действуя в течение такого промежутка времени, могла только образовать бактерии. На Марсе при наличии больших количеств свободного кислорода эволюция могла бы пойти намного дальше. Она могла произвести ядерные клетки. Она даже могла произвести сложных многоклеточных животных и растения.
В 1996 году, когда Маккей предложил эти идеи, многие люди, в том числе и я, посчитали их слегка фантастичными. Но, когда Фридман продемонстрировал марсианские чувствительные к магнитному полю бактерии, взгляд на идеи Маккея изменился. Он показал, что на Марсе всего через 200 миллионов лет после окончания тяжелой бомбардировки были создания, аналогичные тем, что на Земле появились только через 1,6 миллиарда лет. Внезапно идеи Маккея показались не такими уж странными.
Марс и происхождение жизни на Земле
Происхождение жизни на Земле остается загадкой. Несмотря на столетия исследований, предпринимаемых бесчисленными учеными, так и не удалось получить хоть каких-то доказательств того, что на Земле есть или были когда-либо в прошлом любые свободно живущие микроорганизмы проще, чем бактерии. Поразительный факт: хотя о бактериях часто думают как о простейших формах жизни, на самом деле это очень сложные молекулярные машины, использующие хитроумные механизмы, чтобы обеспечить себе выживание, метаболизм, рост, размножение, мобильность и бесчисленное множество других функций. Таким образом исключено, что бактерии могут на самом деле представлять самые ранние формы жизни, которая возникла из химических соединений. Значит, был период предварительной эволюции, начавшейся с гораздо более простых форм – они развились в сложные организмы, которые мы называем бактериями. Тем не менее у нас есть хорошие окаменелые останки существовавших на Земле 3,5 миллиарда лет назад цианобактерий, по виду похожих на современные формы. То есть они появились всего через 300 миллионов лет после окончания тяжелой бомбардировки, которая делала зарождение жизни невозможным. Это чрезвычайно короткий срок, чтобы земные бактерии могли эволюционировать из химических соединений. К тому же окаменелости показывают, что в течение последующих 2 миллиардов лет темпы эволюции на нашей планете были гораздо медленнее.
С математической точки зрения очевидно, что наиболее быстрыми темпами эволюционные изменения в биосфере идут в настоящее время, и чем дальше мы заглядываем в прошлое, изучая известные окаменелости, тем медленнее, как показывают данные исследований, там идет эволюция. Таким образом, бактериям понадобились 2 миллиарда лет, чтобы развиться достаточно для появления ядерных одноклеточных организмов (эукариотов), и еще всего 900 миллионов лет, чтобы произвести первые настоящие многоклеточные растения и животных. В следующие 400 миллионов лет мы видим сложные сосудистые растения, рыб, амфибий, рептилий и предков млекопитающих, а в следующие 200 миллионов лет – деревья с семенами, травы, цветущие растения, динозавров, птиц, млекопитающих и человека. Как мы уже знаем, этот темп коррелирует с концентрацией кислорода в атмосфере. Но общая закономерность прослеживается еще в том, что чем более развитой становится жизнь, тем больше ее способность к еще ускоренной эволюции. Поэтому трудно представить, что простейшие формы жизни, которые предшествовали бактериям, сумели преодолеть огромную эволюционную пропасть, отделяющую органические соединения от сложных бактерий, в мгновение ока по геологическим меркам, а затем эволюция притормозила на следующие 2 миллиарда лет. Если уж на то пошло, простейшие предки бактерий, жившие в среде, лишенной кислорода, должны были добиваться эволюционного подъема самыми утомительными способами.
Кроме того, как упоминалось выше, на Земле не сохранилось примеров организмов этого класса. Это выглядит странно и не очень хорошо объясняется предположением, что подобные существа пришли в упадок из-за более высокоразвитых бактерий. В конце концов, несмотря на появление более сложных эукариотов, бактерии все еще очень многочисленны, и одноклеточные эукариоты живут довольно неплохо, несмотря на то что эволюция пошла дальше в сторону более сложных животных и растений. Сложность всегда достигается ценой затрат на эволюцию, оставляя достаточно места для более простых организмов, которые предшествуют более сложным формам.
Таким образом, хотя бактерии могли быть не первой формой жизни, и окаменелости, и текущие биологические исследования решительно поддерживают утверждение, что бактерии были на самом деле первой формой жизни на Земле. Единственный способ разрешить это противоречие – предположить, что бактерии эволюционировали не на Земле, но прибыли сюда полностью оформившимися из космоса. Эта гипотеза, широко известная как «гипотеза панспермии», подтверждается наблюдением, что многие разновидности бактерий имеют приспособления, которые позволяют им переживать длительную спячку в условиях глубокого вакуума, чрезмерного холода и высокого уровня радиации, то есть в условиях, характерных только для космоса. Обычно в биологии за все приспособления приходится платить, и те, в которых нет пользы, исчезают. Если бы мы нашли вид сухопутного животного с рудиментарными органами для жизни в воде, мы бы предположили, что его предки пришли из моря. Аналогичным образом, можно утверждать, что приспособленность к жизни в космосе среди бактерий подтверждает: их предки явились именно оттуда.