Не говори, какой счет
Недавно мы с братом болтали о квантовой механике и футболе (о чем еще говорить?), и он продемонстрировал то чувство, которое, должно быть, знакомо многим из нас и очень похоже на роль наблюдателя в квантовой механике. Видите ли, мы оба всю жизнь болеем за «Лидс Юнайтед»[37], и брат частенько задумывался, что, если он запишет матч «Лидса» на видео, а затем сядет смотреть его, не зная счета, для него исход матча будет еще не решен. Но если мы доведем стандартную интерпретацию квантовой механики до логического завершения, то получится, что дело не в его незнании финального счета, ведь информация «доступна» и известна миллионам людей. Для него суперпозиция всех возможных результатов схлопывается только в тот момент, когда он досмотрел матч до конца и увидел единственный измеренный им исход – итоговый счет на экране.
Однако, пока он не позвонит мне, чтобы сказать счет, полагая, будто я его еще не знаю, для меня мой брат будет пребывать в суперпозиции обладания знанием о всех возможных результатах. Услышав от него новости, я, в свою очередь, проведу измерение его квантового состояния и заставлю суперпозицию всевозможных счастливых и печальных версий брата схлопнуться в одну.
Я пишу это, и у меня в ушах снова звучат слова Джули. Но тут мне пришлось бы с ней согласиться – это действительно «просто бред»! Я предпочитаю думать, что есть некая «объективная реальность», которая существует вне зависимости от того, наблюдаю ли я. Вот более серьезный пример: ядро радиоактивного урана, похороненное в земле, испустит альфа-частицу, которая может оставить видимый след дефектов кристалла в скале. Неважно, когда мы посмотрим на эту скалу – сегодня, через сотню лет или никогда. След будет там. Что, если скала находится на Марсе и никогда не видывала наделенного сознанием наблюдателя? Находится ли она в неопределенном состоянии, одновременно имея на себе след и не имея его? Очевидно, измерения каким-то образом должны происходить всегда, и сознательные наблюдатели, будь они в белых халатах или без них, не могут влиять на их исход. Правильно будет сказать, что измерение считается произошедшим в момент регистрации «события» или «явления». При желании мы сможем понять это позже.
Простая оптическая иллюзия грубо демонстрирует, как факт измерения влияет на квантовую систему. Внимательно посмотрев на один из белых кругов, вы заметите черные точки, которые появляются и исчезают в некоторых из окружающих его кругов. Но стоит вам тотчас перевести взгляд на одну из этих черных точек, как круг снова станет белым и останется таковым под вашим наблюдением. Вам не удастся поймать черную точку с поличным. Естественно, секрет этого фокуса не имеет ничего общего с квантовой механикой, но мне кажется, что аналогия довольно хороша.
Это утверждение может показаться таким логичным и очевидным, что вам простительно недоумевать, как квантовые физики вообще могут быть настолько глупыми, чтобы придерживаться противоположных взглядов. Но не забывайте, если мы что-то и узнали о квантовой механике, так это то, что поиск рациональных объяснений в ней абсолютно бесполезен. О проблемах квантового измерения размышляли многие великие умы – и большинство их выводов не стоит отрицать столь поспешно.
За прошедшие годы я не раз обсуждал все это со своим коллегой, физиком-теоретиком Рэем Макинтошем. Мы не всегда и не во всем соглашаемся, но почти всегда я прихожу к заключению, что он приводит веские доводы. Самые интересные наши «дебаты», как правило, проходят в барах, где мы проводим вечера, когда ездим в командировки на конференции по ядерной физике. (Физики-теоретики частенько выбирают бары для таких глубоких дискуссий, так как они лишены «удовольствия» всю ночь напролет сидеть в лабораториях, как физики-экспериментаторы.) В ответ на критику точки зрения о том, что ничто не существует до проведения измерений (и коллапса соответствующей волновой функции), Макинтош обычно заявляет следующее. Само собой, электрон – или атом, или Луна – существует и до измерения. Все объекты, будь они микроскопическими или макроскопическими, обладают множеством определенных параметров (то есть величин, которые не пребывают в суперпозиции более чем одного значения), таких как их масса или электрический заряд. Эти параметры не подвержены неопределенности. Следовательно, тот факт, что до проведения измерений нам приходится полагаться на волновую функцию, не означает, что описываемый ею объект нереален. Конечно же нельзя сказать, что определенные его параметры, такие как его точное положение или энергия, обладают конкретными значениями, однако такова природа квантовых объектов. Нам не стоит отрицать их существование, только потому что мы не можем вообразить, каковы они на самом деле.
Два этапа проблемы измерения
Так что представляет собой измерение? Что мы имеем в виду под «наблюдением»? И в какой момент происходит этот магический переход от волновой функции к реальности? Мы знаем следующее: измерение, прежде всего, должно подразумевать некоторое взаимодействие между измерительным устройством, которое я пока не определил, и квантовой системой. Последняя до этого момента может пребывать в суперпозиции различных состояний, соответствующих различным возможным значениям измеряемой величины. Это взаимодействие неизбежно приведет к запутанному состоянию системы и внешнего измерительного устройства, в результате чего последнее окажется в суперпозиции измерения всех различных возможных значений величины одновременно. И что тогда?
Давайте более внимательно проанализируем настройку интерферометра частиц из прошлой главы. Не забывайте, при входе в устройство волновая функция единственного атома разделится на два компонента, каждый из которых пойдет по одному из двух ответвлений прибора. Хотя я и должен описывать атом с помощью волновой функции, я понимаю, что должно происходить нечто странное, так как на выходе из прибора я вижу реальный сигнал интерференции. Я также знаю, что, если я загляну сквозь окошко в одно из ответвлений интерферометра, чтобы проверить, прошел ли атом по этому маршруту, я увижу лишь половину атомов. Но теперь, само собой, картина интерференции пропадет.
Чтобы упростить понимание, я допущу, что засекаю атом, открывая маленькое окошко в ответвлении и замечая крошечную вспышку, когда свет отражается от пролетающего мимо атома. Что же произойдет, если я решу закрыть глаза? Теперь у меня не будет информации о том, каким путем пошел атом. Означает ли это, что картина интерференции вернется? Это подразумевало бы, что физический акт опускания век контролирует исход эксперимента. Аргумент не слишком убедителен. Теперь становится очевидным, что измерение все равно происходит, поскольку я открыл окошко и позволил свету проникнуть внутрь и вступить во взаимодействие с атомами. Картина интерференции исчезает вне зависимости от того, открыты ли у меня глаза. Само собой, я мог бы утверждать, что сигнал интерференции в конце все еще остается возможным исходом (на самом деле одним из трех – атом либо был обнаружен в этом ответвлении, либо не был в нем обнаружен и, должно быть, прошел сквозь другое ответвление, либо был и обнаружен – с помощью света, проникающего в окошко, – и не обнаружен одновременно). Третий из вариантов представляет собой состояние кота Шрёдингера (который жив и мертв одновременно) и приводит к регистрации интерференции интерферометром. Конечно, открыв глаза, я не могу увидеть этот вариант, и сторонники идеи о сознательном наблюдателе утверждают, что именно то, вижу я атом или не вижу, в итоге устраняет вариант, который приводит к возникновению интерференции.
Проблема становится яснее, когда мы устанавливаем возле окошка в ответвлении интерферометра инструмент, который фиксирует вспышку света при прохождении атома мимо окошка и запоминает ее. Этот инструмент играет ту же роль, что и кот Шрёдингера в коробке. Разве инструмент способен существовать в суперпозиции фиксации и нефиксации вспышки?
В целом мы можем выделить два отдельных вопроса, связанных с проблемой измерения в квантовой механике:
(i) Почему мы не можем увидеть суперпозиции таких макроскопически различимых состояний (к примеру, одновременно живых и мертвых котов или регистрирующие и не регистрирующие сигналы приборы)? В конце концов, когда окошко закрыто, мы видим эффект такой суперпозиции в интерферометре и, конечно, в эксперименте с двумя прорезями. Но там состояния относятся к микроскопической шкале и связаны с поведением отдельных атомов.
(ii) Даже если бы существовал способ избавиться от этих неопределенных состояний кота Шрёдингера до установления наблюдения, разве нам не нужен был бы дальнейший коллапс волновой функции, чтобы устранить все оставшиеся варианты, за исключением того, который мы видим в итоге? Таким образом, кот Шрёдингера мог бы быть жив, мертв или и жив, и мертв одновременно. Устранение последнего варианта не дает нам информации, какая из двух оставшихся возможностей исчезнет, когда мы откроем коробку.
В атомном интерферометре волновая функция атома вынужденно пребывает в суперпозиции следования по обоим ответвлениям одновременно. Но если открыть в одном из ответвлений окошко, чтобы проверить, каким путем она прошла, соответствующий другому ответвлению компонент волновой функции сразу же схлопнется до нуля. Даже не засекая движения в наблюдаемом ответвлении, мы все равно заставляем квантовую реальность стать определенной частицей, которая в таком случае следует по другому ответвлению.
Декогеренция
В 1980-х и 1990-х годах первая часть проблемы прояснилась. Физики наконец поняли, что происходит, когда изначально изолированная квантовая система, такая как отдельный атом, прекрасно чувствующая себя в суперпозиции, становится запутанной с макроскопическим объектом. Как выяснилось, суперпозиция различных состояний, в которой вынужденно оказывается столь сложная система, включающая в себя триллион триллионов атомов, просто не может существовать достаточно долго и очень быстро исчезает, или декогерирует. Можно сказать, что деликатная суперпозиция безвозвратно пропадает среди колоссального числа других возможных суперпозиций, соответствующих различным возможным комбинациям взаимодействий между всеми атомами макроскопической системы. Восстановление оригинальной суперпозиции немного похоже на попытку перетасовать колоду карт таким образом, чтобы все четыре масти оказались отдельно друг от друга, однако осуществить его гораздо более сложно.