Но вернемся к Эверетту. За годы его интерпретация приобрела целый ряд вариантов. Его оригинальная идея теперь называется многомировой интерпретацией, но существуют также интерпретация мультивселенной, интерпретация множественных историй и интерпретация множественных разумов. Первая мне нравится, вторую я не очень понимаю, а третья совсем не по мне.
Многомировое объяснение: существуют все возможные реальности. В каждой вселенной атом проходит сквозь свою прорезь, и две вселенные накладываются друг на друга только на уровне отдельного атома. В каждой вселенной атом чувствует присутствие своего параллельного двойника, который прошел сквозь другую прорезь. Суперпозиция, а следовательно, и интерференция, становятся результатом суперпозиции вселенных.
Основная идея заключается в следующем: когда квантовая система сталкивается с выбором, к примеру, когда частица проходит сквозь одну из двух или более прорезей, мы считаем, что не волновая функция оказывается в суперпозиции, а вся Вселенная вместе с ней расщепляется на несколько реальностей, количество которых равняется количеству возможных вариантов. Эти различные миры/вселенные/ветви идентичны друг другу и различаются только тем, какой вариант выбирает частица: в одной вселенной она проходит сквозь верхнюю прорезь, в другой – сквозь нижнюю. Вселенные накладываются друг на друга только в той области, где происходит интерференция, пока в дело не вступает декогеренция. Она заставляет их разделиться на независимые и не взаимодействующие друг с другом реальности. Вот и все. Процесса измерения больше нет, как нет и нужды в коллапсе волновой функции. Кот Шрёдингера оказывается мертвым в одной вселенной и живым – в другой. Будучи наблюдателями, мы тоже расщепляемся и видим лишь исход одной ветви. Но в параллельных вселенных остаются наши копии, которые наблюдают альтернативные исходы.
Хью Эверетт был разочарован и раздосадован недостатком поддержки его взглядов со стороны других физиков – и действительно, есть сведения, что, когда Эверетт посетил Бора в Копенгагене, тот лишь отмахнулся от него. Он ушел из физики и стал сначала специалистом по анализу оборонных проблем, а затем частным подрядчиком американской оборонной промышленности, в процессе чего и сколотил состояние, рассчитывая, как максимизировать количество жертв во время ядерной войны. Мило. Интерес к его работе в конце 1960-х годов снова проявил Брайс Девитт, который и ввел термин «многомировая интерпретация».
Оксфордский физик Дэвид Дойч, один из отцов-основателей сферы квантовых вычислений, предложил вариацию идеи Эверетта, в которой все возможные вселенные уже существуют, а потому им не нужно ждать встречи с квантовым выбором, чтобы расщепиться на части. Дойч также разработал тест собственной интерпретации, который требует разработки искусственного интеллекта. В ходе теста планируется проверить, имеет ли в таком случае место коллапс волновой функции, поскольку в многомировой интерпретации он не происходит.
Что еще есть на рынке?
С течением времени многие интерпретации дискредитировались или отбрасывались либо из-за крайне малой вероятности их верности, либо из-за получения новых, опровергающих их результатов экспериментов. К примеру, родственники подхода де Бройля – Бома, известные под общим названием теории локального реализма, оказались вычеркнуты из списка после проведения Аленом Аспе в начале 1980-х годов эксперимента, который подтвердил нарушение неравенства Белла (описанного в Главе 4). Точно так же сегодня вряд ли хоть кто-то всерьез считает, что для коллапса волновой функции необходимо сознание.
Среди ранних теорий выделялась статистическая интерпретация – что интересно, именно ее предпочитал Эйнштейн, – которая гласит, что квантовая механика дает информацию только о целом наборе измерений (идентичных квантовых систем), а не об одном отдельном измерении. Отсюда и отсылка к общей «статистике». Так как теперь эксперименты можно проводить на отдельных системах и даже на отдельных атомах, чтобы выжить, этой интерпретации требуются серьезные комментарии от небольшой группы ее последователей.
Недавно в списке интерпретаций появилось еще два пункта – транзакционная интерпретация и интерпретация последовательных историй. Первая, предложенная Джоном Крамером, своей значительной нелокальностью напоминает подход де Бройля – Бома. На самом деле нелокальность здесь даже более сильна: требуются не просто мгновенные коммуникации в пространстве, но коммуникации во времени! Открытие коробки с котом Шрёдингера отправляет в прошлое сигнал, который велит радиоактивному ядру распадаться или не распадаться.
Подход последовательных историй, который в основном обязан своим появлением изучающему частицы физику, лауреату Нобелевской премии Марри Гелл-Ману и его коллеге Джеймсу Хартлу, еще не получил широкого распространения, но уже привлек достаточно большое количество сторонников. Эта интерпретация сочетает волновые функции и вероятности последовательным образом, который не требует проведения измерений. Впервые эту трактовку в 1984 году предложил Роберт Гриффитс, а через несколько лет ее развил Роланд Омне. В соответствии с этой точкой зрения, «история» определяется как цепочка квантовых событий, последовательных во времени. Этот подход удачен тем, что он позволяет нам определять вероятности различных событий – к примеру, вероятность распада радиоактивного атома в конкретный момент времени, – даже если они происходят далеко в космосе, вдали от всех измерительных приборов.
Мне также стоит упомянуть, что существует несколько интерпретаций, основанных на теории динамической редукции[43]. Эти подходы требуют некоторого дополнения, которое время от времени приводит к самостоятельному спонтанному коллапсу волновой функции (в отсутствие измерений). Хотя теорию можно согласовать со всеми известными наблюдениями, реальный физический механизм, вызывающий этот коллапс, пока неизвестен. Эксперименты ближайшего будущего проверят, происходит ли это на самом деле. Если это так, то квантовую механику потребуется модифицировать. Большинство физиков сходятся во мнении, что вероятность этого крайне мала.
Вверху: Транзакционное объяснение. Хотя эта интерпретация не помогает объяснить главную загадку, как атом проходит сквозь обе прорези одновременно, она делает попытку объяснить, как атом еще до прохождения сквозь прорези знает, наблюдают ли за ним. Достигая экрана или детектора, установленного возле одной из прорезей, атом посылает в прошлое сигнал, который определяет поведение приближающейся волны, веля ей либо проходить сквозь обе прорези и интерферировать, либо проходить лишь сквозь одну из прорезей.
Внизу: Объяснение суммы историй. Атом остается частицей, но одновременно изучает все возможные пути, какими бы невероятными они ни были. Сложенные вместе, все пути исключают друг друга, оставляя лишь один физический путь, по которому и следует атом. Но то, как именно пути исключают друг друга, зависит от количества вариантов; если обе прорези открыты, возможных путей больше, поэтому их исключение происходит иначе.
Где мы сейчас?
Проблемы интерпретации квантовой механики вышли на первый план серьезной науки лишь в последние пару десятилетий. Отчасти это объясняется проведением новой серии невероятно сложных и инновационных экспериментов в сфере атомной физики и оптики, а также выдающейся работы в новых областях квантовой криптографии и квантовых вычислений. Во многих исследованиях физики манипулируют отдельными атомами!
Будучи студентом, я и не подозревал о проблемах интерпретаций. Хотя тема этой главы лишь сбивает студентов с толку и отвлекает их от проведения полезных и важных расчетов и измерений, кажется, что обсуждение этих вопросов до недавнего времени считалось табу. Марри Гелл-Ман выразился так:
«Нильс Бор промыл мозги целому поколению физиков, заставив всех поверить, что проблема уже решена».
А по словам самого Бора:
«нет никакого квантового мира. Есть лишь абстрактное квантовофизическое описание. Ошибка – думать, что задача физиков заключается в том, чтобы выяснить, какова наша природа. Физики думают [лишь] о том, что мы можем сказать о природе».
Я не согласен. По крайней мере, здесь я чувствую, что Эйнштейн был прав. Он полагал, что задача физических теорий заключается в «как можно более правдивом описании истинной физической реальности». Так что я предпочитаю в духе «Секретных материалов» считать, что «истина где-то рядом». Я не знаю, сумеем ли мы когда-либо ее постичь, однако не сомневаюсь, что наши поиски не окажутся тщетными. Одно то, что формализм квантовой механики дает нам роскошь обладания сразу несколькими интерпретациями, из которых мы (пока) не можем выбрать верную, не означает, что верной интерпретации не существует. Само собой, мы можем ее никогда не найти, однако было бы слишком самонадеянно с нашей стороны полагать, что, раз мы не можем сделать выбор, его не может сделать и природа.
Квантовая реальность с позиции де Бройля и Бома
Крис Дьюдни. Школа наук о земле и окружающей среде, Портсмутский университет
Хотя интерпретацию де Бройля – Бома и нельзя назвать самой популярной среди физиков, существует несколько ее вариантов. Общим знаменателем различных подходов становится тот факт, что частицы обладают определенным положением, которое развертывается в соответствии с детерминистскими уравнениями движения. Зная некоторые изначальные положения всех частиц в системе (не забывайте, это нельзя контролировать – см. основной текст) и принцип изменения волновой функции с течением времени, можно точно рассчитать, как будут двигаться частицы. Таким образом, все будущее (и прошлое) системы, включая результаты любых проводимых измерений, становится предсказуемым. В этом отношении квантовая механика ничуть не более загадочна, чем классическая. Подходы различаются лишь нашим взглядом на то, как именно определяются траектории.