Квант. Путеводитель для запутавшихся — страница 32 из 48

На практике наше представление о нуклоне зависит от того, как мы пытаемся его изучить. Если нам хочется описать, как высокоэнергетические протоны или нейтроны, бомбардирующие ядро, взаимодействуют с другими нуклонами, мы обнаруживаем, что их довольно логично считать крошечными локализованными частицами. Однако внешний нейтрон в нейтронном облаке (см. статью «Ядерные облака» в Главе 3) обладает волновой функцией, которая распространяется на большой объем вокруг всего ядра.

Вторая причина сложности ядер связана с природой сильного ядерного взаимодействия, которое, как оказывается, имеет даже более фундаментальное происхождение, чем предполагал Юкава, предлагая свою картину обмена пионами. Ко второй половине XX века физики начали задумываться, не происходят ли внутри нуклонов некие более глубинные процессы.

Кварки

К середине 1930-х годов было известно о существовании нескольких элементарных частиц. Помимо протонов, нейтронов и электронов, которые составляют атомы обычной материи, и фотонов электромагнитного излучения, физики также обнаружили позитроны и нейтрино. Затем, вскоре после появления теории о пионах Юкавы, в космических лучах засекли новую частицу, которую сначала ошибочно приняли за пион Юкавы. На самом деле она напоминала тяжелый и нестабильный электрон и сегодня называется «мюоном». Мюоны формируются в верхних слоях атмосферы Земли, когда высокоэнергетические протоны, прилетающие из космоса, сталкиваются с молекулами воздуха, и продолжительность их жизни составляет всего лишь долю секунды. Пионы были экспериментально обнаружены несколькими годами позже.

Чтобы глубже изучить структуру квантового мира, вскоре были построены ускорители частиц (или дробилки атомов, как их сначала называли). Идея была проста: вместо использования света для исследования субатомных структур физики последовали примеру Резерфорда с альфа-частицами. Однако, чтобы изучать более маленькие линейные масштабы, им нужны были более энергетические частицы. Что важно, они использовали волнообразные свойства частиц материи, а не световые волны. Чем выше энергия пучка частиц, тем короче длина волны де Бройля и меньше итоговый линейный масштаб. Кроме того, чем больше энергии можно освободить из крошечного объема посредством все более мощных столкновений частиц, тем выше вероятность создания из этой энергии все более и более экзотических частиц.

Ко второй половине XX века было открыто так много новых элементарных частиц, что физики начали задумываться, действительно ли их можно называть элементарными. Как выяснилось, атомы 92 различных элементов состояли всего из трех частиц – протонов, нейтронов и электронов, – так, может, все эти частицы тоже состояли из нескольких более фундаментальных компонентов?

При классификации частиц было обнаружено, что одно семейство включает в себя слишком много вариаций. Подверженные сильному взаимодействию адроны подразделяются на две группы. Первую составляют барионы, включая протон и нейтрон. К ним вскоре добавился целый ряд новых частиц-барионов, в том числе «лямбда», «сигма», «кси» и «омега». Вторая группа, называемая мезонами, включает в себя пион, а также несколько других, более тяжелых частиц, таких как «эта» и «каон».


Мы не можем вынуть отдельные кварки из частицы вроде нуклона. Даже если мы дадим достаточно энергии, чтобы разорвать связь между кварками, с помощью этой энергии у нас получится лишь создать новую пару кварк/антикварк посредством так называемого «рождения пар» (см. рисунок на странице 188). Новый кварк встанет на место вынутого из нуклона, а антикварк объединится с вынутым кварком и сформирует мезон.


В попытке восстановить простоту и лаконичность два теоретика, Марри Гелл-Ман и Джордж Цвейг, предположили, что все адроны (барионы и мезоны) обладают внутренней структурой. Они продемонстрировали, что все различные вариации можно представить состоящими из более элементарных частиц, называемых «кварками».

Всего несколькими годами позже эта гипотеза получила подтверждение в Стэнфордском центре линейного ускорителя в Калифорнии. В ходе эксперимента, который в значительной степени напоминал знаменитый опыт Резерфорда с рассеянием альфа-частиц, в свое время подтвердивший гипотезу о внутреннем строении атомов, высокоэнергетические электроны отскакивали от протонов и нейтронов. На этот раз направление отталкивания электронов показало, что внутри каждого нуклона содержится три крошечных сгустка материи. Существование кварков было доказано.

Сначала считалось, что существует всего три типа (называемых «ароматами») кварков. Теперь мы знаем, что всего их шесть, причем каждый обладает различной массой. Протоны и нейтроны состоят всего из двух типов кварков, названия которых довольно незамысловаты: протон содержит два «верхних» кварка и один «нижний», а нейтрон – два «нижних» и один «верхний».

Как выяснилось, заряд протона или электрона представляет собой не самую маленькую единицу электричества. Три кварка заряжены отрицательно и обладают по одной третьей заряда электрона каждый, а другие три кварка заряжены положительно и содержат по две трети заряда протона. Таким образом два верхних кварка, положительный заряд каждого из которых равен двум третям заряда электрона, и один нижний кварк, отрицательный заряд которого равен одной трети заряда электрона, вместе составляют заряд протона, а два нижних и один верхний нивелируют заряды друг друга внутри электрически нейтрального нейтрона.


Фермионы включают три поколения семейств частиц: в нижней части левой колонки находятся кварки, а в нижней части правой – лептоны. Вся состоящая из атомов материя во Вселенной создана исключительно из частиц первого поколения (они изображены на поверхности). В это семейство входят верхние и нижние кварки, которые составляют нуклоны в атомном ядре, электрон и его нейтрино. Частицы второго и третьего поколения гораздо более тяжелы и имеют очень краткий срок жизни. Их можно создавать в ускорителях частиц.


Четыре других аромата называются – хотя на это и нет особых причин – «странностью», «очарованием», «прелестью» и «истинностью». Лично я предпочитаю описание четырех ароматов магии, данное Терри Пратчеттом в романах о Плоском мире: «верхний», «нижний», «поперечный» и «мятный»!

В дополнение к электрическому заряду кварки должны также обладать другим свойством, называемым цветным зарядом. Он необходим, чтобы объяснить, почему для создания нуклонов и всех остальных барионов кварки группируются исключительно по три, но встают в пары кварк/антикварк для создания пионов и сходных с ними мезонов. Подробнее об этом я расскажу в Главе 8.

Сегодня известно о существовании всего двух видов элементарных частиц материи: кварков и лептонов. Лептонами называют все частицы, которые не подвержены сильному ядерному взаимодействию, – то есть все частицы, не имеющие цветного заряда, а иными словами: все элементарные частицы материи, за исключением кварков! К лептонам относится электрон и два его более тяжелых собрата, мюон и таулептон, а также три типа нейтрино.

Что ж, приятно хотя бы осознавать, что первая открытая элементарная частица, обнаруженная более ста лет назад, до сих пор остается элементарной. Отдадим должное электрону.

Так насколько мы уверены, что электроны и кварки представляют собой самые фундаментальные кирпичики материи? Быть может, со временем мы выясним, что они тоже обладают внутренней структурой. Быть может, существует и кое-что более базовое и фундаментальное.

Элементарные компоненты

Фрэнк Клоуз, профессор физики, Оксфордский университет


На различных этапах истории появлялись разные кандидатуры на звание фундаментальных кирпичиков материи. Столетие назад фундаментальными считались атомные элементы, к 1930-м им на смену пришли электроны, протоны и нейтроны. Сегодня электрон по-прежнему в нашем списке, но протоны и нейтроны, как выяснилось, состоят из более мелких частиц – кварков. При изучении истории возникает очевидный вопрос: действительно ли электрон и кварки фундаментальны или же они тоже состоят из еще более мелких частиц, как русские матрешки? Честный ответ таков: мы не знаем! Мы можем лишь сказать, что сегодня ни один из лучших экспериментов не дает и намека на наличие более глубинной структуры. В то же время есть намеки, что в этом слое «космического лука» есть нечто особенное.

Как мы к этому пришли? Есть две экспериментальных техники: рассеяние и спектроскопия.

Если предполагаемый фундаментальный слой на самом деле состоит из более глубинных компонентов, квантовая механика ограничивает способы распределения этих компонентов. Одна из таких конфигураций будет обладать наименьшим количеством энергии: мы называем ее основным состоянием. Один или несколько компонентов могут пребывать в более высокоэнергетическом состоянии, из-за чего вся система будет обладать большим количеством энергии. Компонент может испускать фотон света, теряя энергию в процессе; а поглощение фотона подходящей энергии может переводить систему из основного состояния в более высокоэнергетическое. На основании спектра энергий фотона можно вывести рисунок энергетических уровней (результирующей) системы.

Итоговые энергетические уровни молекулы (из-за вибрации атомов друг возле друга); атома (из-за его электронов); ядра (из-за вибрации и вращения его протонов и нейтронов) и даже самих протона или нейтрона (из-за движения составляющих их кварков) с качественной точки зрения кажутся очень похожими. Однако количественно они различаются.

Единицы энергии на квантовом уровне называются «электронвольтами»: 1эВ = 1,6×10-19 Джоулей. Чтобы вы получили представления о масштабе этой единицы, скажу, что обычно требуется несколько эВ, чтобы выбить электрон из атома. Для возбуждения молекул необходимы миллиэлектронвольты (мэВ); ядра атомов возбуждаются под воздействием миллионов электронвольт (МэВ), а протоны и нейтроны – под воздействием сотен МэВ. Это отражает еще более мелкие масштабы расстояний и действующих сил при переходе от относительно крупных молекул к маленьким протонам. Это первый намек на существование более глубокой структуры. Рассеяние напрямую от этих компонентов (как в экспериментах Резерфорда на атомном ядре или высокоэнергетическое рассеяние пучков электронов на кварках) показывает их внутренние составляющие.