Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи — страница 12 из 27

χ) каждой структуры χ в разложении полной многоэлектронной функции Ψ:

(3.35)

где если атомные орбитали аиЬ спарены в структуре χ; 0 — в противном случае;

А и В обозначают атомы и с оответствующие им наборы атомных орбиталей.

Вес структур зависит, вообще говоря, как от коэффициентов Сχ , так и от перекрывания соответствующих многоэлектронных функций. Вследствие неортогональности последних понятие веса не является ни простым, ни однозначным. Удовлетворительное определение этого понятия, к сожалению, до сих пор отсутствует. Однако в ряде случаев вес структур определяется исключительно из соображений симметрии. Для π-электронной системы бензола, например, вес двух кекулевских структур (рис. 15) одинаков, так как эти структуры эквивалентны по симметрии. Поэтому если пренебречь прочими структурами, то ωχ = 0,5 (χ = 1,2), и с учетом σ-системы, описываемой в приближении идеального спаривания единственной структурой, кратность связи двух соседних атомов углерода равна

(3.36)

Рис. 15. Кекулевские структуры молекулы бензола

Аналогично для соседних атомов углерода и водорода

(3.37)

(см. рис. 15).

Проблему более серьезную, чем определение веса отдельной структуры, представляет неоднозначность выбора самих структур. Так, для π-электронной системы бензола линейно-независимый базис может включать пять структур, характеризуемых диаграммами I-V (рис. 16)[12].

Рис. 16. Линейно-независимые структуры молекулы бензола, отвечающие стандартным таблицам Юнга

Очевидно, что каким бы ни был вес этих структур, π-электронные составляющие кратностей связей С2С3, С4С5 и C1C6 равны нулю, и, следовательно, эти связи, в отличие от связей С1C2, С3С4 и C5С6, оказываются одинарными. Значения кратностей для остальных связей также не согласуются с симметрией молекулы бензола. Набор структур Кекуле и Дьюара для бензола позволяет получить разумные значения кратностей связей. Однако в общем случае сформулированная проблема пока не решена.

Валентность атома А можно определить как сумму кратностей связей, образуемых атомом А:

(3.38)


где или 1 — вклад атомной орбитали в валентность атома А.

В рамках метода ВС с использованием единственной для каждого атома А валентной конфигурации ГА (без учета ионных структур) для синглетных состояний V(χ)a в действительности не зависит от χ. Учитывая это обстоятельство, а также то, что вес всех структур в сумме равен единице, валентность атома можно представить в виде суммы

(3.39)

В соответствии с последним равенством валентность атома А оказывается равной числу неспаренных орбиталей в валентной конфигурации ГА этого атома, т. е. его спин-валентности, и не зависит, следовательно, ни от выбора линейно-независимого набора структур, ни от используемого способа определения веса отдельной структуры.



Возвращаясь к рассмотренной ранее формальной "химико-алгебраической аналогии", можно сказать, что ее физический смысл был вскрыт в методе валентных связей. Оказалось, что двухкомпонентному вектору соответствует пара одноэлектронных спиновых функций α(σ) и β(σ), одночленному инварианту соответствует двухэлектронная спиновая функция которая на заре квантовой химии называлась спин-инвариантом. Кроме того, произведению одночленных инвариантов в соответствующих степенях отвечает понятие структуры в методе ВС, а валентности как показателю степени VX , в которой X входит в F(X, Y,...), — число неспаренных орбиталей в валентной конфигурации ГX.

Развитие метода ВС в работах Полинга. Концепция гибридизации

До сих пор мы рассматривали преимущественно квантово-химические исследования представителей геттингенской школы теоретической физики, выполненные в 1929-1932 гг. В то же самое время в США Полингом и Слэтером был развит альтернативный подход к проблеме электронной структуры молекул, в основе которого были положены две фундаментальные концепции — гибридизации атомных орбиталей и резонанса структура нашедшие впоследствии широкое распространение среди химиков. Остановимся сначала на первой из указанных концепций. Она была сформулирована независимо Хундом, Слэтером, Малликеном[13] и Полингом, причем последний представил ее в наиболее четком и удобном для химиков виде.

В Копенгагене, в Архиве Н. Бора, хранится тетрадь с черновыми записями Полинга, относящимися к 1927-1929 гг., т. е. ко времени его стажировки в Европе. На обложке тетради надпись: "Статья Лондона. Общие идеи о связях",[14]- и далее приписка, относящаяся, по-видимому, к более позднему времени: "Здесь мы имеем первое обсуждение гибридизации".

Анализ этого документа показывает, что толчком к созданию Полингом концепции гибридизации послужило изучение им теории эффекта Штарка на атоме водорода, разработанной Шредингером в 1926 г. Эффектом Штарка называют изменение энергетических уровней атомов, молекул и твердых тел под действием электрического поля, обнаруживаемое по сдвигу и расщеплению спектральных линий. Это явление, открытое в 1913 г., было затем интерпретировано Шредингером на основе теории возмущений. При этом вследствие специфического для атома водорода вырождения энергетических уровней по квантовому числу l в отсутствие внешнего электрического поля (что соответствует нулевому приближению теории возмущений) из вырожденных функций должны быть образованы определенные линейные комбинации, называемые правильными функциями нулевого приближения:

(3.40)

"Коэффициенты этих линейных комбинаций определяются из секулярного уравнения, включающего матричные элементы вида

(3.41)

В силу нечетности оператора возмущения отличными от нуля будут лишь недиагональные матричные элементы с совпадающими значениями квантовых чисел m и m'. В частности, для n = 2, соответственно двукратному вырождению по l = 0 и 1, получается секулярное уравнение второго порядка

(3.42)

где

Правильные функции нулевого приближения

(3.43)

являются в этом случае эквивалентными гибридными атомными орбиталями (sp0 — гибридизация) атома водорода в однородном электрическом поле. Обе функции, ψ1 и ψ2, соответствуют нулевой проекции орбитального момента импульса на направление внешнего поля, т. е. являются орбиталями σ-типа. Дважды вырожденные орбитали π-типа ψ21,+1 и ψ21,-1 в аксиальном электрическом поле остаются негибридизованными, и их энергетические уровни не изменяются.

Все сказанное выше справедливо для возбужденных состояний атома водорода с присущим ему специфическим вырождением. Для прочих атомов энергетические уровни зависят как от n, так и от l. Однако и в этом случае также можно было ожидать эффективное смешение атомных орбиталей одного слоя (т. е, орбиталей с одинаковыми n, но разными l), если расстояние между уровнями Еnl и Еnl' достаточно мало по сравнению с энергией возмущения. Такая ситуация, по мнению Полинга, должна реализоваться в молекулах, где атомы находятся в сильном электрическом поле, создаваемом ядрами и электронами других атомов молекулы. Анизотропия этого поля приводит к тому, что орбитальный момент импульса электрона не сохраняется и квантовое число l теряет смысл, поэтому возможно смешение атомных орбиталей как с одинаковыми, так и с различными значениями l. В то же время возможность гибридизации функций разных слоев представляла ь Полингу сомнительной ввиду большой разности в соответствующих энергиях. Исключение могут представлять атомы перех дных элементов, в которых энергии (n — 1) d-AO сопоставимы энергиями ns- и nр-АО.

Следует отметить, однако, что более глубокий анализ проблемы обнаруживает существенное несоответствие между традиционным — назовем его условно "химическим" — представлением о гибридизации, ве ущим свое начало от работ Полинга 1928 и 1931 гг. [71-72], и тем — назовем его условно "физическим" — представлением, к которому приводят изложенные выше рассуждения, натолкнувшие Полинга на идею гибридизации. Так, для молекулы метана, согласно химическим представлениям, атомные орбитали углерода должны быть гибридизованы в четыре (гибридных) АО hi, ориентированных к атомам водорода и обеспечивающих представление локализованных на связях C-Hi двухцентровых МО в виде

(3.44)

Преобразования тетраэдрической группы симметрии переводят гибридные АО hi друг в друга. Эти орбитали были названы поэтому Леннард-Джонсом (1949 г.) "эквивалентными" относительно точечной группы симметрии молекулы (Td). В тоже время правильные функции нулевого приближения должны классифицироваться по неприводимым представлениям (НП) этой группы. Такими трансформационными свойствами обладают негибридные 2s-, 2р-орбитали атома углерода. При этом 2s-АО преобразуются по полносимметричному,а трехкратно вырожденные 2р-АО-по трехмерному НП группы Td. Таким образом, анализ концепции гибридизации, основанный на эффекте Штарка, приводит к весьма своеобразной ее формулировке, при которой атомные орбитали углерода в молекуле СH4 оказываются негибридизованными в традиционном смысле этого слова. Можно сказать, что при таком подходе мы получаем скорее концепцию антигибридизации, чем гибридизации.

Разумеется, ни в 1928 г., ни даже в 1931 г. проведенный выше анализ был еще невозможен, так как пространственная симметрия молекулы учитывалась в то время только качественно, без привлечения математического аппарата теории групп. С исторической точки зрения необходимость введения концепции гибридизации была обусловлена потребностью объяснить в терминах метода ВС такие явления, как локализованный характер химических связей во многих соединениях, их направленность o в пространстве, аддитивность и трансферабельность ассоциируемых с отдельными связями молекулярных свойств, а также геометрию молекул. При этом геометрическим аспектам придавалось особое значение. По мнению Полинга и многих других химиков, именно гибридизация атомных орбиталей является фактором, определяющим симметрию молекулы, а отчасти и ее геометрические параметры. К сожалению, при этом произошло обращение причинно-следственных связей между гибридизацией и симметрией. Часто утверждают, что первая является причиной последней. Так, например, в молекуле метана промотирование электрона из 2s- в 2р-состояние с образованием 2s2р