В 1930-1940 гг. метод Хартри-Фока использовался в основном при расчетах атомных структур, что объясняется возможностью введения дополнительных упрощений, связанных со сферической симметрией задачи (приближение центрального поля).
В 1951 г. ученик Малликена Рутан сформулировал метод Хартри-Фока для молекулярных систем с замкнутыми оболочками [75]. Особенность метода Рутана, отличающая его от исходного метода ССП, состояла в представлении молекулярных орбиталей в виде линейной комбинации атомных. Таким образом, идеи, разработанные в 1920-1930 гг. в теориях Хунда-Малликена, Хартри-Фока, Леннард-Джонса и Слэтера, нашли свое выражение в рамках единого формализма.
С внедрением в начале 50-х годов в практику квантовохимических исследований быстродействующих ЭВМ начался качественно новый этап развития теории строения молекул. Основное внимание исследователей сосредоточилось не столько на качественных аспектах теории химической связи, сколько на развитии методов количественного расчета молекулярных свойств. Однако рассмотрение этой стороны развития теории не входит в нашу задачу. Мы ограничимся в дальнейшем обсуждением лишь некоторых новых результатов, относящихся к описанию структуры химической связи, а также квантовомеханической интерпретации понятий классической теории химического строения.
Глава 4. Современные методы исследования структуры химической связи
Матрица плотности и некоторые замечания о квантовомеханическом описании одкозяектронных и многоэлектронных состояний
В квантовой механике состояние частицы с энергией е описывается волновой функцией ψ(r), которая удовлетворяет уравнению Шредингера
(4.1)
При этом любому физическому состоянию частицы можно сопоставить множество волновых функций, отличающихся друг от друга множителем exp(iα) с вещественным параметром а, не зависящим от координат частицы. Иными словами, волновая функция ψ'(r) = exp (iα)ψ(r), и в частности ψ'(r) = — ψ(r) (α = π), так же как и ψ(r), будет собственной функцией гамильтониана с тем жезначением энергии ε. Если волновая функция ψ(r) нормирована на единицу:
(4.2)
то такому же условию нормировки будет удовлетворять волновая функция ψ'(r). Математические ожидания всех физических величин, представленных операторами и вычисляемых как интегралы
(4.3)
также не меняются при рассматриваемом преобразовании. Именно это обстоятельство и доказывает, что волновые функции ψ и ψ' описывают одно и то же состояние частицы.
Действие оператора на ψ(r) определяется по формуле
(4.4)
Функция μ в (4.4) называется ядром оператора в его интегральном представлении. При таком представлении операторов легко видеть, что математическое ожидание
(4.5)
определяется фактически не функцией ψ(r), а произведением двух ψ-функций
(4.6)
которое называется матрицей плотности для частицы, нахо дящейся в определенном состоянии. Строго говоря, матрица плотности ρ(r|r') не может быть матрицей в обычном смысле этого слова, если координаты r, нумерующие ее строки, и координаты r', нумерующие ее столбцы, не дискретны. Тем не менее термин "матрица плотности" для ρ(r|r') является общепринятым.
Матрица плотности становится истинной матрицей, если она представлена в некотором базисе функций Xk(r), т. е. определяется совокупностью матричных элементов Pkl, по которым можно воспроизвести ρ(r|r') согласно равенству
(4.7)
В качестве функций Xk(r) в квантовой химии чаще всего используются атомные орбитали, центрированные на ядрах атомов, образующих молекулу. Например, для молекулы Н2+ матрица плотности в двухцентровом базисе 1s-орбиталей атомов водорода имеет вид
где S — интеграл перекрывания базисных АО.
Матричные элементы Рkl получаются из коэффициентов разложения МО в базисе АО:
по формуле
Зависимость матрицы плотности ρ(r|r') от r и r' не следует понимать в том смысле, что она зависит от координат двух частиц.
В действительности r и r' представляют собой две различные (но возможно и совпадающие) точки пространства, в которых может быть локализована одна рассматриваемая частица. При этом плотность вероятности локализации ее в некоторой точке r равна диагональному элементу . Именно эту функцию характеризуют часто используемые в квантовой химии карты распределения электронной плотности. Функция ρ(r) содержит информацию, достаточную для вычисления математических ожиданий тех весьма многочисленных физических величин, операторы которых не включают интегрирования или дифференцирования. Например, дипольный момент d электронной системы относительно центра координат представлен одноэлектронным оператором с ядром[33]:
(4.8)
и определяется по формуле
(4.9)
Использование матрицы плотности вместо волновой функции устраняет указанную выше неоднозначность в квантовомехани-ческом описании состояния частицы. В то же время такое описание является более общим и позволяет характеризовать одночастичные состояния для систем, содержащих несколько различных или тождественных частиц, хотя точное описание этих состояний с помощью волновых функций невозможно.
Пусть некоторое состояние W-электронной системы задано антисимметричной нормированной функцией Ψ(x1,..., xN), где хi обозначает совокупность пространственных координат (ri) и спиновой переменной (σi) i-гo электрона. Тогда N-электронная матрица плотности ρN определяется аналогично одноэлектронной (4.6):
(4.10)
Диагональные элементы матрицы плотности ρN характеризуют вероятность того, что первый электрон локализован в точке x1, в то время как второй — в точке х2, третий — в точке х3 и т д. Конечно, в силу неразличимости электронов их нумерация является произвольной.
Рассматриваемые N электронов могут входить в состав системы включающей также и другие частицы. Например, молекулы состоят из электронов и атомных ядер, образующих единую систему. Пусть состояние последней определяется нормированной функцией Φ(x1,..., xN,ξ), причем ξ обозначает совокупность переменных всех частиц, не являющихся электронами (т. е. ядер). Состояние N-электронной системы в общем случае не может описываться Ψ-функцией и в этом смысле не является чистым[34]. Но оно может характеризоваться N-частичной редуцированной матрицей плотности:
(4.11)
Термин "редуцированная" в применении к матрице плотности означает, что некоторые переменные в левом и правом наборах ее аргументов отождествляются и затем по ним проводится интегрирование.
Подобным образом определяются редуцированные матрицы плотности для k-электронных подсистем N-электронной системы:
(4.12)
Целесообразность введения множителя обусловлена тождественностью электронов. В частности, редуцированная одноэлектронная матрица плотности определяется через N-электронную равенством
(4.13)
и нормирована на число электронов N:
(4.14)
Часто используют бесспиновую матрицу плотности
(4.15)
где проведено интегрирование (или суммирование) по спиновой переменной σ.
Отметим теперь некоторые используемые в дальнейшем математические свойства редуцированных матриц плотности.
Вследствие антисимметричности N-электронной функции Ψ (или Φ) относительно перестановок электронных переменных
(4.16)
k-частичные матрицы плотности при антисимметричны в левой и правой группах аргументов, разделенных вертикальной чертой:
(4.17a)
(4.17б)
Из определения ρk следует также, что
(4.18)
Учитывая сказанное на с.102 об интегральном представлении операторов , мы можем утверждать, что матрица плотности является ядром некоторого эрмитового оператора k-частичной плотности вероятности ρk:
He следует думать, однако, что этот оператор соответствует некоторой наблюдаемой физической величине. Его роль в квантовой теории состоит в том, что он характеризует состояние N-электронной системы в той мере, в какой это необходимо для определения ожидаемого значения любой физической величины, представленной суммой k-электронных операторов. При этом последние не зависят от состояния рассматриваемой многоэлектронной системы. Среднее значение оператора для некоторого k-электронного состояния определяет заселенность этого состояния. Собственные функции оператора называются функциями "естественных" k-частичных состояний, а собственные значения — естественными заселенностями n(k)ν. Функции определяющие одночастичные состояния с заселенностями называются естественными спин-орбиталями и удовлетворяют уравнению
(4.20)
Бесспиновые ψν(r), удовлетворяющие аналогичному уравнению на собственные значения матрицы плотности ρ(r|r') называются "естественными" орбиталями.
В качестве примера рассмотрим молекулу водорода Н2. Естественные молекулярные орбитали для этой молекулы определяются исключительно из соображений симметрии (если их ищут в виде линейной комбинации двух атомных 1s-орбиталей) и классифицируются на симметричную (g) и антисимметричную (u) МО:
В то же время естественные заселенности связывающего (ψg) и разрыхляющего (ψu) одноэлектронных состояний зависят от способа построения полной двухэлектронной функции молекулы Н2 из одноэлектронных (табл. 3).
Таблица 3. Естественные заселенности в молекуле H2[35]
Матрицу плотности ρ