Об уменьшении при локализации МО обменной энергии электронного взаимодействия, а также об увеличении J(1) и уменьшении J(2) по сравнению со значениями, соответствующими каноническим МО, можно судить по данным табл. 4, полученным в работе [82] для гидридов бора.
Таблица 4. J(1),J(2)и K для исходных канонических и локализованных МО
В табл. 5 приведены результаты Эдмистона и Рюденберга по локализации МО в молекулах N2, СО и BF. Первая из этих молекул характеризуется симметрией D∞h, гетеронуклеарные СО и BF — симметрией C∞ν. Их канонические МО должны поэтому классифицироваться на σ- и π-орбитали. Каждая из рассматриваемых изоэлектронных молекул содержит десять электронов в σ-системе и четыре — в π-системе. Четыре из десяти σ-электронов принадлежат атомным остовам в том смысле, что описываются МО (iA), локализованными на внутренних (остовных) σ-оболочках. Эти орбитали практически идентичны атомным 1s-орбиталям. Следующие четыре σ-электрона описываются локализованными МО (lА), представляющими неподеленные электронные пары атомов. Оставшиеся два электрона должны относиться, очевидно, к связывающей σ-орбитали. Однако локализация МО по методу Эдмистона и Рюденберга приводит к связывающим МО иной симметрии. Эти локализованные МО (bi) не могут быть отнесены ни к σ-, ни к π-типу. Они образуют систему трех эквивалентных, так называемых банановых МО, переводящихся друг в друга преобразованиями группы С3υ и определяемых с точностью до произвольного поворота относительно молекулярной оси. В ряду молекул N2, CO, BF характер трех эквивалентных связывающих МО bi монотонно меняется от строго ковалентного для N2 до существенно поляризованного в направлении атома фтора для молекулы BF. В последнем случае они подобны неподеленным парам атома фтора.
Таблица 5. Орбитали Эдмистона-Рюденберга в молекулах N2, CO и BF
Практическая реализация метода Эдмистона-Рюденберга предполагает использование формализма самосогласованного поля и вычисление большого числа двухэлектронных интегралов, что представляет довольно сложную математическую задачу. Количество таких интегралов, как и время, необходимое для максимизации J(1) (или минимизации J(2) и К), очень быстро растет с увеличением числа электронов в системе и числа базисных АО, используемых для представления МО.
Следует отметить также, что метод Эдмистона и Рюденберга, строго говоря, не гарантирует соответствия между локализованными МО и отдельными атомами или связями. Впрочем, это обстоятельство может рассматриваться не только как недостаток, но и как достоинство метода, поскольку он допускает в принципе представление МО в базисе, существенно отличающемся от многоцентрового базиса АО.
В вычислительном отношении более удобным, чем метод Эдмистона-Рюденберга, является метод Бойса [31]. В качестве критерия, определяющего степень локализации МО, в этом методе используется сумма квадратов расстояний (Ri) между центрами тяжести орбиталей:
(4.34)
где
(4.35)
Локализованные по Бойсу МО характеризуются максимальным разделением в пространстве по критерию В и одновременно минимальными среднеквадратическими радиусами, точнее минимальным значением суммы их квадратов:
(4.36)
Недостатком метода Бойса является то, что он не обеспечивает эффективного разделения валентных и остовных АО. Например, 1s- и 2s-орбитали сферически-симметричны и никаким преобразованием нельзя изменить расстояния между их центрами тяжести (которое всегда равно нулю). С другой стороны, смешение остовной 1s-орбитали с валентными np-орбиталями должно приводить к увеличению расстояния от нулевого до некоторого конечного (для гибридных АО) значения. Максимуму значения В при этом должна соответствовать тетраэдрическая гибридизация 1s- и nр-АО. В действительности наряду с остовной 1s-орбиталью следует принимать во внимание и валентную ns-AO. Именно она должна смешиваться с другими валентными АО. Но с учетом сказанного выше ясно, что метод Бойса может приводить к завышенному вкладу остовных АО в связывающие МО.
Метод проецирования. Метод проецирования, предложенный в работах Полака [73] и позднее развитый Роби [74], основан на том, что одноэлектронная матрица плотности ρ1(x|x') в однодетерминантном приближении является ядром оператора проектирования на подпространство занятых молекулярных спин-орбиталей. Поэтому для любой нормированной спин-орбитали ψ проекционная норма
(4.37)
удовлетворяет неравенству
(4.38)
причем если спин-орбиталь ψ целиком принадлежит подпространству занятых молекулярных спин-орбиталей, и если спин-орбиталь ψ ортогональна к этому подпространству.
Следуя Полаку, локализованную на атоме А МО, описывающую неподеленную электронную пару или орбиталь внутренней оболочки атома, можно определять как линейную комбинацию орбиталей атома А (т. е. как гибридную АО этого атома):
(4.39)
максимизирующую проекционную норму . Если бесспиновая одноэлектронная матрица плотности ρ(r|r') представлена в базисе АО g матрицей
(4.40)
и базис g характеризуется матрицей перекрывания S, причем S'a = 0 для а, а' ∈ А, то столбец Ua, представляющий искомую гибридную АО ha, является собственным вектором матрицы Q(A) образуемой матричными элементами (SPS)aa' ∈ А, и этот собственный вектор отвечает максимальному собственному значению nа. Когда последнее равно двум, гибридная АО ha будет в точности совпадать с естественной МО, описывающей неподеленную электронную пару; когда na ≈ 2, гибридная АО ha будет аппроксимировать такую орбиталь.
Двух-, трех- ... и K-центровые МО, локализованные на атомных группах (связях) G = (A1,..., AK) и представленные линейными комбинациями вида
(4.41)
определяются в методе проецирования аналогичным образом, т. е. посредством диагонализации матриц Q(G) при условии ортонормированности
(4.42)
Согласно работам [73, 74], процедура локализации МО осуществляется в следующей последовательности:
1) сначала определяются одноцентровые , локализованные на остовных и валентных оболочках отдельных атомов;
2) одноцентровые исключаются из исходного базиса преобразованием
(4.43)
и канонической ортонормировкой линейно-зависимого набора орбиталей g';
3) в полученном ортонормированием базисе, включающем меньшее число орбиталей, чем исходный базис АО g, определяются двухцентровые МО ;
4) если число найденных и в сумме отлично от числа всех занятых канонических МО, аналогичным образом определяются многоцентровые последовательно для К = 3, 4,..., пока число локализованных МО не сравняется с числом занятых канонических МО.
Таблица 6. Одноэлектронная матрица плотности для молекулы метана, представленная в ортогонализованном (по Лёвдину) базису АО
Следует отметить, однако, что такую последовательность построения локализованных МО не всегда можно считать оправданной. Например, нет оснований для поиска локализованных трехцентровых МО диборана в подпространстве занятых МО, более узком, чем рассматриваемое при построении двухцентровых МО этой молекулы.
Существенным недостатком метода проектирования является то, что он приводит к неортогональным наборам локализованных МО. В частности, орбиталь hа, принадлежащая атому А и перекрывающаяся с орбиталью hb, атома В, принадлежит отчасти и последнему атому, а перекрывание МО l, локализованной на связи АВ, и МО l локализованной на связи АС, означает, что l и делокализованы на связи АС и АВ соответственно. В работах [73, 74] предлагалось ортогонализовывать наборы по методу Лёвдина [62]. Однако локализация получаемых таким образом МО не будет оптимальной в смысле максимума проекционной нормы . Поэтому метод проектирования удобно применять в тех случаях, когда требуется выделить лишь одну локализованную МО, например МО, реализующую донорно-акцепторную связь в аддукте Н3В. NH3.
Представляется разумным формулировать метод проектирования в ортогонализованном по Лёвдину многоцентровом базисе АО, орбитали которого могут рассматриваться как "модифицированные АО", представляющие атомы в химическом соединении. К такому базису относятся фактически результаты полуэмпирических расчетов МО в приближении полного пренебрежения дифференциальным перекрыванием. Следует отметить, что ортогонализация многоцентрового базиса АО g обеспечивает ортогональность гибридных АО неподеленных электронных пар, но двухцентровые или многоцентровые локализованные МО, определяемые методом проектирования, остаются при этом неортогональными, если связиi на которых они локализованы, имеют общие атомы.
Рассмотрим теперь в качестве примера, иллюстрирующего метод проектирования, данные по локализации МО и гибридизации АО в молекуле метана, полученные нами на основе расчетов в приближении полного пренебрежения дифференциальным перекрыванием. В табл. 6 приведена одноэлектронная матрица плотности Р для молекулы метана, равновесная геометрия и ориентация в пространстве которой определяются данными табл. 7. Вычислим двухцентровую МО, локализованную на связи С-H1. Для этого выделим из матрицы Р блок, соответствующий орбиталям атома углерода и атома водорода H1:
и приведем его унитарным преобразованием к диагональному виду
(4.44)
Таблица 7. Декартовы координаты атомов в молекуле метана,Ао
Собственные значения nl равны 2,000; 1,150; 1,009; 1,009; 0,000. Таким образом, одна из одноцентровых орбиталей, представленная в базисе АО