заморочками.
Другой вариант — опять-таки выделить различные степени свободы и рассматривать сепарабельность по одним из них и несепарабельность по другим. То есть на тонких планах человек будет «привязан» к отдельным своим страстям и порокам, но у него остается шанс после «чистилища», после освобождения от них приблизиться к Богу.
Есть еще один возможный исход. Когда в выделенной подсистеме есть сильное взаимодействие между ее внутренними составными частями, то связь с остальным окружением становится слабой (относительно внутренних связей), и внешняя запутанность «теряется» на фоне сильных взаимодействий внутри подсистемы. Это близко к тому, что происходит в плотном мире, когда сильные взаимодействия «забивают» нелокальные связи. Аналогична ситуация с тонкими структурами типа эгрегоров, у которых внутренние связи тоже сильнее внешних, и они существуют в виде относительно самостоятельных (сепарабельных) квазизамкнутых структур. Среди них есть и демонические структуры, в которые попадает человек после смерти физического тела, если он в своей жизни руководствовался сугубо материальными, плотскими интересами. Например, тот, для кого при жизни в плотном теле были исключительно важны деньги, будет являться частью энергетического тела денежного эгрегора — одной из самых сильных демонических структур, щедро подпитываемой нашими «психическими выделениями» с плотного плана реальности.
2.9. Состояния, энергия, энтропия
На Вселенную иногда смотрят как на скопление энергетических полей. Такой взгляд хорошо соответствует представлениям квантовой теории, в которой доказывается, что «все есть энергия», что энергия — это основная величина, определяющая состояние системы (любого размера, вплоть до Универсума), и, исходя из энергетической характеристики объекта, можно определить среднее значение других физических величин, характеризующих систему. Более того, квантовая теория сегодня способна количественно описать, как возникают все эти «скопления энергетических полей», как появляются локальные энергетические объекты с различной плотностью энергии, в том числе и наш плотный предметный мир, из нелокального квантового источника, в котором изначально нет никаких энергетических неоднородностей. Квантовая теория способна описывать как переходы объекта из менее плотного энергетического состояния в более плотное, так и обратный процесс.
В квантовой механике нет таких проблем с понятием «энергия», как в классической физике, где нет четкого и однозначного ее определения. В квантовой теории эта величина вводится непосредственно из аксиоматики квантовой механики, исходя из основополагающего понятия «состояние». Каждому состоянию в квантовой теории соответствует определенное значение энергии, то есть энергия квантуется в соответствии с различными состояниями системы.
Можно сказать, что энергия в квантовой теории — это обобщение всех известных (и неизвестных) энергий в классической физике, и она связана лишь с состоянием системы. В квантовой теории просто не может быть никаких неизвестных энергий, поскольку в качестве энергии мы можем задать любую (разумную, подходящую) функцию состояния системы. Можно задать и целый набор таких функций, то есть рассматривать совокупность энергий тварного и нетварного мира. Любое изменение состояния системы, например, любая наша мысль, чувство, желание и т. п., с точки зрения квантовой теории, связаны с изменением ее энергии, поскольку последняя — это функция состояния системы, и если меняется состояние — меняется и энергия.
Понятие «состояние» в квантовой механике непосредственно не связано с привычными классическими характеристиками системы (массой, скоростью и т. д.). Эти величины вторичны, и для нелокальных состояний они просто неприменимы. Энергия в этом отношении — более универсальная величина, ее можно использовать во всех случаях. Для физических объектов (если мы не рассматриваем, например, в терминах квантовой теории текстовое сообщение) состояние системы может быть описано в терминах одной ее характеристики — энергии. Обычно предполагается, что энергия должна быть определена в некотором заданном интервале. Все наблюдаемые физические величины, в том числе классические, можно получить из матрицы плотности. В случае замкнутой системы матрица плотности записывается через вектор состояния в виде проектора. Таким образом, матрица плотности в энергетическом представлении (и вектор состояния для замкнутой системы) отражает реальное, объективное состояние системы с определенным энергетическим спектром.
В целом, можно сказать, что квантовая теория изучает физические законы, которым подчиняются любые энергетические структуры (независимо от их размера и типа энергии). В настоящее время квантовая механика приступила к изучению физических процессов, в результате которых энергетические структуры возникают из нелокального состояния и уплотняются (декогеренция), а также обратных процессов — разуплотнения энергетических структур, перехода их в менее плотное состояние (возрастание квантовой запутанности), вплоть до полного «растворения» и потери своей внутренней структуры — чистого нелокального состояния. Особо подчеркну, что это не просто теоретизирование. То, что эти процессы действительно существуют в окружающем мире, подтверждается многочисленными физическими экспериментами, которые показывают адекватное соответствие теоретическим предсказаниям. Более того, эти процессы применяются на практике в технических устройствах, о чем уже неоднократно упоминалось.
Квантовая теория информации устанавливает связь между мерой квантовой запутанности и информацией. Это позволяет рассмотреть декогеренцию как процесс перехода Слова в его осязаемую форму. В терминах Кастанеды это относится и к физическому процессу, при котором наша мысль, команда, точнее, наше «намерение» становится «командой Орла» и реализуется в плотном мире. Кроме того, связь между энергией и квантовой информацией дает возможность сделать еще один вывод: все энергетические процессы связаны с процессами информационными, и на фундаментальном уровне Универсума, в нелокальном (нетварном) источнике Реальности все энергетические процессы в подсистемах сводятся к информационным. На фундаментальном уровне нет ничего, кроме квантовой информации, которая в процессе декогеренции проявляется в пространствах меньшей размерности в виде локальных объектов и тварных энергий.
Поскольку термин «энергия» будет часто встречаться в последующих главах, я попытаюсь пояснить, что же подразумевается под этим понятием в контексте этой книги. Тем, кто желает более подробно узнать, как из самых простых соображений в квантовой теории вводится понятие «энергия», могу порекомендовать прочесть первые главы курса «Статистической термодинамики» Ч. Киттеля. Этот курс интересен тем, что вся термодинамика здесь очень легко и достаточно строго выводится из простейшей квантовомеханической модели из (не взаимодействующих!) элементарных магнитиков с двумя ориентациями магнитного момента (вверх/вниз).
Но для начала — несколько слов об основах квантового подхода к описанию макроскопических процессов.
Как пишет Киттель в предисловии[70]: «Статистическая термодинамика представляется удивительно легким предметом, если при ее изучении придерживаться последовательной квантовомеханической точки зрения, в основе которой лежит понятие состояний всей системы, независимо от того, велика она или мала».
И далее, в начале первой главы: «В настоящее время мы знаем, что статистическую термодинамику легче изучать с позиций квантовой механики, чем на основе классической механики времен Гиббса. Это обстоятельство неудивительно, поскольку квантовая механика дает правильное описание природы, тогда как на атомном уровне описание в рамках классической механики является неполным. Только переведя принципы Гиббса на язык квантовой механики, мы приходим к ясному, последовательному и простому физическому обоснованию как термодинамики, так и статистической механики. В процессе такого перевода существенно использование только одного-единственного понятия квантовой механики, а именно — понятия о стационарном квантовом состоянии системы частиц».
В простейшей квантовомеханической модели из элементарных магнитиков состояние системы определяется заданием ориентации (вверх или вниз) каждого из них. И энергия системы определяется достаточно просто, исходя из ее состояния. Энергия выражается через следующую разность, которая в данном случае называется спиновым избытком:
(число спинов вверх) — (число спинов вниз) = спиновый избыток.
Например, состояние, в котором число спинов «вверх» равно числу спинов «вниз», имеет нулевую энергию (равномерное распределение энергии). Два состояния, в котором все спины направлены вверх (вниз), имеют максимальную энергию из всех возможных для данной системы.
Таким образом, энергия системы — это величина, которая характеризует отклонение системы от равновесного состояния. Отсюда — связь с классической физикой и всевозможными определениями энергии, которые в ней используются. Все они в основе своей содержат квантовомеханическое определение энергии и с классической точки зрения характеризуют работу, которую может совершить система при ее переходе к равновесному состоянию. Здесь мы видим естественный переход к понятию силы (градиента энергии), который совершает эту работу.
Отмечу, что вся классическая термодинамика выводится из простейшей квантовомеханической модели невзаимодействующих спинов, и остается возможность дальнейшего совершенствования этой модели. Очевидным становится то основное упрощение, следствием которого являются законы классической термодинамики. Поскольку не учитываются взаимодействия между частицами, из рассмотрения убираются несепарабельные состояния и нелокальные квантовые корреляции.
Курс статистической термодинамики Киттеля хорош еще и тем, что он на конкретном примере показывает высокую эффективность подхода квантовой механики к объяснению физических процессов в окружающей реальности. Замечу — любых процессов, в том числе макроскопических, поскольку в основе