Странные квантовые явления и их отсутствие в обычном мире не единственная и даже не самая большая загадка, которую надо разгадать, чтобы расшифровать заключенное в квантовой физике послание. Ни один физик не сомневается: квантовая физика работает. И тем не менее уже девяносто лет, с тех самых пор, как появилась эта теория, о ее значении ожесточенно спорят. В этом споре позиция большинства физиков, включая, видимо, и Бора, заключается в том, что они настойчиво отрицают существование самого предмета спора. Ученые заявляют, что, несмотря на феноменальный успех теории, сама постановка вопроса о том, что происходит в мире квантов, в некотором смысле неприемлема и ненаучна. Эта теория, по их мнению, не нуждается в интерпретации: то, что она описывает, не является истинной реальностью. И действительно, странность квантовых явлений заставила некоторых выдающихся физиков прямо утверждать: да, ничего не поделаешь, квантовая физика доказала, что микроскопические объекты просто не существуют в том смысле, в котором существуют объекты нашего повседневного мира[1]. Следовательно, говорят они, в квантовой физике невозможно говорить о реальности. В реальном мире нет, да и не может быть ничего, что соответствовало бы этой теории.
Популярность такого подхода к квантовой физике удивительна. Физика описывает окружающий нас мир. Ее цель – выявить фундаментальные составляющие Вселенной и законы их взаимодействия. Многих физиков привело в науку именно желание понять основные, глубинные свойства природы, увидеть, из чего складывается ее удивительная мозаика. Но как только дело касается квантовой физики, большинство физиков тут же категорически отказываются от каких-либо объяснений; вместо этого они, как выразился Дэвид Мермин, требуют просто «заткнуться и вычислять»[2].
Еще удивительнее то, что этот преобладающий подход снова и снова доказывает свою несостоятельность. Вопреки устоявшемуся среди физиков мнению, в историческом споре с Бором явное преимущество осталось за Эйнштейном – он убедительно показал, что в самой основе квантовой физики имеются глубокие противоречия, требующие разрешения. И просто отбросить вопрос о реальности как «ненаучный», как делали некоторые оппоненты Шрёдингера, – позиция неубедительная и основанная на устаревшей философии. Среди глухого к этому вопросу большинства находились-таки «возмутители спокойствия», которые разработали альтернативные подходы к квантовой физике. Они сумели растолковать, что происходит в этом мире, нисколько не жертвуя точностью теоретического описания.
Такие альтернативы показывают: идея о том, что в квантовой физике не может существовать понятия реальности, ложна. И все-таки большинство физиков по-прежнему в той или иной форме придерживаются этой идеи. Ее по-прежнему преподают в школах, популяризаторы рассказывают о ней публике. Даже когда вспоминают об альтернативных подходах, о них вспоминают именно как об альтернативах тому, что считается верным по умолчанию, невзирая на то что как раз это умолчание оказывается совершенно неплодотворным. Таким образом, спустя почти столетие после появления квантовой теории, после того, как она полностью изменила мир и жизнь каждого человека на Земле – как в лучшую, так и в худшую сторону, – после всего этого мы все еще не знаем, что именно эта теория говорит нам о природе реальности. Именно эта от начала и до конца странная ситуация является предметом нашей книги.
Да, такое положение дел поистине удивительно. Но почти никто из не-физиков о нем не догадывается. Впрочем, почему, собственно, оно должно кого-то волновать? В конце концов, квантовая физика прекрасно работает. Да и самих физиков вряд ли должно что-то беспокоить: разве недостаточно того, что их математический аппарат работает безотказно и делает точные предсказания?
Но наука – это нечто большее, чем математика и предсказания. Наука рисует нам картину мира, рассказывает, как он устроен. Именно эта картина, этот рассказ об устройстве мира служат отправной точкой как повседневной научной практики, так и будущего развития научных теорий, не говоря уж о более широком мире человеческой деятельности вне области науки. Мы можем придумать множество историй о значении любой системы уравнений; из этих историй мы выбираем лучшую, а потом начинаем искать в ней изъяны. Именно так и развивается наука. Истории, вытекающие из лучших научных теорий, ведут к экспериментам, которые ученые ставят и результаты которых интерпретируют, уточняя и изменяя теории. Как сказал об этом Эйнштейн, «теория определяет, что мы можем наблюдать»[3].
История науки снова и снова подтверждает это высказывание. Галилей не изобретал телескопа, но он первым подумал о том, чтобы направить хороший телескоп на Юпитер – ведь он считал, что Юпитер, как и Земля, – планета, которая обращается вокруг Солнца. После этого в телескопы стали регулярно смотреть на все, что встречается на небе: на кометы, туманности, звездные скопления. Но никому не пришло в голову воспользоваться телескопом, чтобы выяснить, не изгибает ли гравитация Солнца лучи звезд во время солнечного затмения, пока общая теория относительности Эйнштейна не предсказала этот эффект через триста с лишним лет после открытия Галилея[4]. Научная практика зависит от содержания наших теорий – и не только от содержания математического, но и от «истории», от картины мира, которая идет рука об руку с математикой. Этой картине мира принадлежит ключевая роль – как в науке, так и в выходе за пределы существующей науки с целью построить новую.
Картина мира много значит и за пределами чистой науки. То, что наука рассказывает нам о мире, постепенно пропитывает собой всю культуру, изменяя наш взгляд на мир вокруг нас и на наше в нем место. Открытие того факта, что Земля не является центром Вселенной, дарвиновская теория эволюции, Большой взрыв и расширяющаяся Вселенная возрастом почти 14 миллиардов лет, содержащая сотни миллиардов галактик, в каждой из которых сотни миллиардов звезд, – эти идеи радикально изменили взгляд человечества на самое себя.
Да, квантовая физика работает. Но игнорировать то, что она рассказывает нам о реальности, значит делать вид, что мы не замечаем прорехи в нашем понимании мира. Это значит игнорировать науку как процесс человеческого познания. В частности, это значит игнорировать наше поражение: крах попыток мыслить поверх междисциплинарных барьеров, защитить чистую науку от разлагающего влияния больших денег и военных контрактов, соответствовать идеалам научного мышления. Это поражение затрагивает интересы каждого мыслящего обитателя нашего мира, мира, каждый уголок которого преобразован наукой. Поэтому наш рассказ – рассказ о науке как области человеческой деятельности, а значит, не просто о том, как устроена природа, но и о том, как устроены люди.
ПрологНевозможное свершилось
Джон Белл впервые столкнулся с математическим аппаратом квантовой физики, когда был студентом университета в Белфасте, и то, что он узнал, ему совсем не понравилось. Квантовая физика показалась Беллу какой-то невнятной путаницей. «Я не решался подумать, что в ней что-то неверно, – рассказывал Белл, – но я точно знал, что это паршиво»[5].
Нильс Бор, «крестный отец» квантовой физики, говорил о разделении между миром больших объектов, которым управляет классическая ньютоновская физика, и миром объектов малых, где царит физика квантов. Но в словах Бора смущало то, что из них невозможно было понять, где граница между этими мирами. Ничуть не лучше был и Вернер Гейзенберг, первооткрыватель математического аппарата квантовой физики. Подход Бора и Гейзенберга к физике квантов, названный в честь города, где жил и работал Бор, копенгагенской интерпретацией, отличался той же нечеткостью, которую Белл невзлюбил еще с университетских курсов по квантовой физике.
Незадолго до того, как Белл в 1949 году окончил университет, он познакомился с книгой Макса Борна, еще одного из создателей квантовой физики, «Натуральная философия причины и случая» (Natural Philosophy of Cause and Chance). Она произвела на Белла сильное впечатление, особенно обсуждение доказательства, построенного великим математиком и физиком Джоном фон Нейманом. Согласно Борну, фон Нейман доказал, что копенгагенская интерпретация – единственно возможный способ понимания квантовой физики. То есть либо копенгагенская интерпретация верна, либо неверна квантовая физика. А так как успехи квантовой физики были оглушительными, видимо, надо было примириться с копенгагенской интерпретацией и присущим ей принципом неопределенности.
Белл не смог ознакомиться с доказательством фон Неймана в оригинале – оно было опубликовано только по-немецки, а Белл немецким не владел. Прочитав описание этого доказательства у Борна, Белл «занялся более практическими вещами»[6], чем размышления о копенгагенской интерпретации: его пригласили на работу в британскую программу по получению ядерной энергии. О сомнениях по поводу квантовой физики пришлось забыть. Но в 1952-м Белл «увидел, что свершилось невозможное»[7] – его кратковременное примирение с копенгагенской интерпретацией было вдребезги разбито появлением одной новой статьи.
Физик по имени Дэвид Бом, невзирая на доказательство фон Неймана, сумел каким-то образом найти другой способ понимания квантовой физики. Как ему это удалось? Где допустил ошибку великий фон Нейман и почему никто этого не заметил раньше, чем Бом? Белл не мог ответить на эти вопросы, не прочитав доказательства фон Неймана. Спустя три года книгу фон Неймана издали на английском, но к этому времени жизнь Белла переменилась: он женился и переехал в Бирмингем, где писал докторскую диссертацию по квантовой физике. И все же о статье Бома он «никогда не мог забыть». «Я всегда знал, что она меня ждет»