Квантовая революция. Как самая совершенная научная теория управляет нашей жизнью — страница 8 из 74

[62]. Насколько ясно и обманчиво просто было то, что писал Эйнштейн, настолько закрученными и непонятными выглядели писания Бора с их знаменитыми длинными и витиеватыми фразами. Вот, например, один из его сравнительно коротких и несложных пассажей, в котором он объясняет, что квантовые «скачки» составляют ключевое различие между квантовой и классической ньютоновской физикой:

«Невзирая на трудности, которые, таким образом, содержатся в формулировках квантовой теории, по всей вероятности, как мы сейчас увидим, ее сущность может быть выражена в так называемом квантовом постулате, который приписывает любому атомному процессу существенную скачкообразность, или, вернее, индивидуальность, совершенно чуждую классической теории и символизируемую планковским квантом действия»[63].

Говорил Бор не яснее, чем писал. «На одной конференции в 1932 году Бор представил фундаментальный доклад, посвященный текущим затруднениям теории атома, – вспоминал ученик Бора Карл фон Вейцзеккер. – Со страдальческим лицом, склонив голову набок, он еле продирался сквозь нагромождаемые им неоконченные фразы»[64]. Затруднения, которые Бор испытывал при выражении своих мыслей, не ограничивались публичными выступлениями. Рассказывая о частной беседе с Бором, Вейцзеккер писал, что «его спотыкающаяся речь <…> становилась тем менее и менее вразумительной, чем более важным был предмет разговора»[65]. (Как ни странно, при этом Бор якобы настойчиво рекомендовал студентам «никогда не выражаться проще, чем они способны думать».) Однако неясность мысли лишь усиливала закрепившуюся за Бором репутацию мудреца и пророка. Он мог обронить какое-то слово и оставить учеников разгадывать его смысл часы или даже дни напролет[66]. Но эта невнятность вовсе не уменьшала горячей привязанности студентов. Рудольф Пайерлс, один из учеников Бора (позже ставший научным руководителем молодого Джона Белла, когда тот писал докторскую диссертацию), говорил: «Хоть часто мы и не могли понять Бора, мы восхищались им почти безоговорочно и любили его беспредельно»[67].

* * *

Спустя три дня после встречи с Эйнштейном в Берлине Гейзенберг прибыл в Копенгаген. Со времени своей предыдущей стажировки в институте Бора он успешно защитил докторскую диссертацию, разработал матричную механику и получил предложение возглавить кафедру в профессорской должности. Но он вовсе не чувствовал себя победителем – наоборот, он был раздосадован. Триумф его революционной матричной механики был у него украден – через полгода после выхода его работы венский физик Эрвин Шрёдингер опубликовал статью, в которой изложил теорию волновой механики, конкурирующую с теорией Гейзенберга.

Шрёдингер разработал принципы волновой механики в декабре 1925 года на курорте в Швейцарских Альпах, где он жил со своей подругой. Его теория была изложена относительно простым математическом языком волновых уравнений: гладко изменяющиеся волновые функции подчинялись уравнению Шрёдингера (как мы видели в главе 1). Гейзенберга беспокоило, что достижение Шрёдингера может затмить его собственный результат, и основания для беспокойства у него были. Замысловатый математический аппарат гейзенберговой матричной механики большинству физиков того времени был незнаком, и его нельзя было сопоставить ни с какой вразумительной физической картиной мира. Напротив, в теории Шрёдингера использовалась знакомая всем математика и простые физические идеи. С ней было просто обращаться, ее было легко объяснить. Шрёдингер гордился тем, что его теория не заставляет физиков «подавлять свою интуицию и оперировать одними абстракциями – такими, как вероятности переходов, энергетические уровни и тому подобное»[68]. И большая часть физического сообщества соглашалась с этим – даже давние союзники Гейзенберга. Арнольд Зоммерфельд, с которым Гейзенберг консультировался при написании своей диссертации, говорил: «Хотя истинность матричной механики несомненна, ее математическое изложение исключительно громоздко и пугающе абстрактно. Вот Шрёдингер и пришел к нам на выручку»[69]. Борн назвал шрёдингеровскую волновую механику «наиболее глубокой формой квантовых законов»[70]. Тем временем Паули уже использовал теорию Шрёдингера, чтобы сделать то, чего он не смог добиться при помощи одной только матричной механики, – вычислить яркость спектральных линий водорода, решив тем самым задачу, не поддававшуюся теоретикам более семидесяти лет[71].


Рис. 2.1. Архитекторы копенгагенской интерпретации в Институте Нильса Бора, 1936 год Слева направо: Бор, Гейзенберг и Паули


Однако при всех успехах волновой механики, которыми Шрёдингер откровенно хвастался, похоже было, что в тех областях, где эти две теории пересекались, шрёдингеровские уравнения приводили к тем же результатам, что и матричная механика Гейзенберга. Теория Шрёдингера, как и гейзенберговская, идеально воспроизводила спектр водородного атома: различные энергетические уровни модели атома Бора были, по Шрёдингеру, связаны с «собственными энергетическими состояниями» конкретной волновой функции с постоянными значениями энергии. Шрёдингер вскоре показал, что матричная и волновая механики математически эквивалентны и разными средствами описывают одни и те же идеи единой новой теории – квантовой механики. Задачи наподобие описания яркости спектральных линий сначала удалось решить средствами волновой механики только потому, что в большинстве случаев с уравнением Шрёдингера было в математическом отношении проще обращаться, чем с матрицами Гейзенберга. Но в смысле физической интерпретации реальности две версии квантовой механики отличались радикально. Шрёдингер был уверен, что нашел способ интерпретировать все квантовые явления как гладкое распространение волн, описываемых его уравнением. Гейзенберга такая трактовка вовсе не убеждала. «Чем больше я раздумываю над физической частью теории Шрёдингера, тем более отталкивающей я ее нахожу, – писал он Вольфгангу Паули. – То, что Шрёдингер говорит о возможности наглядного представления его теории, “вероятно, не вполне верно”, другими словами, это полная чушь»[72].

Но большинство физиков все же находило шрёдингеровские волны более естественными, чем гейзенберговские матрицы. Раздосадованный этим Гейзенберг, который побаивался, что идеи Шрёдингера могут затмить его собственные достижения, написал своему наставнику Бору, а Бор, в свою очередь, написал Шрёдингеру, приглашая его приехать в Копенгаген и принять участие в «обсуждениях в узком кругу сотрудников института, обсуждениях, которые помогут нам глубже разобраться в открытых вопросах теории атома»[73]. Первого октября 1926 года Шрёдингер прибыл в Копенгаген на поезде. «Обсуждения» начались немедленно. Позже Гейзенберг вспоминал:

«Дискуссии Бора со Шрёдингером начались еще на вокзале и продолжались ежедневно с раннего утра до позднего вечера. Шрёдингер остановился у Бора в доме, так что их разговоры не прерывались. И хотя обычно Бор был очень тактичен и приветлив в отношениях с людьми, он поразил меня тем, что предстал почти беспощадным фанатиком, неспособным сделать оппоненту ни малейшей уступки, признать, что он хоть в чем-то неправ. Почти невозможно передать всего накала страсти этих дискуссий, всей глубины убеждений каждого из оппонентов, которые сквозили буквально во всяком их высказывании»[74].

По убеждению Шрёдингера, успех его волнового уравнения означал, что все квантовые явления можно в конечном счете объяснить поведением непрерывных волн. Но Бор и Гейзенберг на это возражали, что существуют явления, требующие привлечения идеи квантовых «скачков», – например, электроны в атоме Бора, переходящие с одной орбиты на другую. Гладким волновым преобразованием этого описать было нельзя. Шрёдингер не соглашался. «Если без этих чертовых квантовых скачков и правда никак не обойтись, то я уже жалею, что вообще связался с теорией квантов»[75], – жаловался он. В конце концов Шрёдингер, ослабев от непрекращающихся споров и неумолимых атак Бора, подхватил обычную для темной и сырой датской осени «простудную лихорадку» и слег в постель. Пока жена Бора Маргрете ухаживала за больным, угощая его горячим чаем с пирожными, Бор, присев на краешек кровати, тихо, но настойчиво продолжал свои уговоры: «Но вы же не можете не признать, что…»[76]

Убедить другого в своей правоте никому из них так и не удалось, и Шрёдингер отправился восвояси. «На взаимное понимание нельзя было и надеяться – ведь в это время ни одна из сторон не могла предложить полной и непротиворечивой интерпретации квантовой механики», – вспоминал Гейзенберг. «И тем не менее к концу визита Шрёдингера мы в Копенгагене уверенно чувствовали, что находимся на верном пути»[77]. В принципиальном смысле проблема заключалась в том, что физический смысл волновой функции Шрёдингера был по-прежнему неясен. Но летом того же года Макс Борн частично разгадал эту головоломку: он показал, что волновая функция частицы в некоторой точке дает вероятность измерения частицы в этой точке[78] и что волновая функция коллапсирует, как только измерение произведено. Глубокое исследование Борна в конечном счете принесло ему Нобелевскую премию, и вполне заслуженно. Но выведенное Борном правило операций с волновыми функциями поставило перед физиками новые вопросы. Что такое измерение? Почему волновые функции ведут себя по-другому, когда их «измеряют» – что бы это выражение ни значило? Идея Борна и математический аппарат, разработанный Шрёдингером, стали золотым ключиком, открывшим квантовый мир, но цена этого открытия оказалась высокой: на сцене появилась проблема измерения.