Квантовые миры и возникновение пространства-времени — страница 10 из 59

–43 секундам. Планковская длина – действительно очень короткое расстояние, но, предположительно, она приобретает физическую важность в тех масштабах, где одновременно действуют квантовая механика (h), гравитация (G) и специальная теория относительности (c).

Забавно, что Планк сразу же усмотрел в этом открытии потенциал для контакта с внеземными цивилизациями. Если мы когда-нибудь начнем общаться с инопланетянами с помощью межзвездных радиосигналов, то они не поймут, что мы имеем в виду, если скажем, что рост человека – около 2 метров. Но если инопланетяне ориентируются в физике не хуже нас с вами, то они должны знать планковские единицы. Данное предположение пока не довелось опробовать на практике, но в остальном постоянная Планка оказала на науку неизмеримое влияние.

Если задуматься, то идея о том, что свет излучается дискретными квантами, энергия которых зависит от их частоты, озадачивает. Учитывая, что мы знаем о свете, логичнее было бы предположить, что энергия света зависит от его яркости, а не от цвета. Но благодаря своей идее Планк вывел верную формулу, поэтому в каком-то отношении эта идея точно работала.

Альберту Эйнштейну оставалось лишь в присущей ему манере отбросить устоявшиеся взгляды и совершить драматический переход к новой парадигме мышления. В 1905 году Эйнштейн предположил, что свет излучается только с конкретными значениями энергии, так как в буквальном смысле состоит из дискретных «порций», а не является непрерывной волной. Свет состоит из частиц, иными словами фотонов, как мы называем их сегодня. Именно эта идея – что свет распространяется дискретными частицеподобными квантами энергии – ознаменовала истинное рождение квантовой механики, и именно за это открытие Эйнштейн был удостоен Нобелевской премии в 1921 году. (Он заслужил еще как минимум одну Нобелевскую премию – за предложенную им теорию относительности, но так ее и не получил.) Эйнштейн был умен и понимал, что квантовая механика – это серьезно; как он сказал своему другу Конраду Хабихту, гипотеза о квантах света была «очень революционной».

Обратите внимание на тонкую разницу между предположениями Планка и Эйнштейна. Планк считал, что свет с фиксированной частотой излучается порциями с определенной энергией, тогда как Эйнштейн полагал, что так происходит именно потому, что свет – это и есть дискретные частицы. Есть разница в двух следующих утверждениях: 1) сказать, что эта кофемашина готовит ровно одну чашечку кофе за прогон, и 2) сказать, что весь кофе существует только в виде одночашечных порций. Это может иметь смысл, если мы рассуждаем о частицах материи, например об электронах и протонах, но всего несколькими десятилетиями ранее Максвелл триумфально объяснил, что свет – это волна, а не частица. Утверждение Эйнштейна грозило свести этот триумф на нет. Сам Планк не хотел принимать эту безумную идею, но она объясняла полученные экспериментальные данные. А это все-таки серьезное преимущество для безумной идеи, ищущей признания.

⚪ ⚪ ⚪

Тем временем в «частичном» отделе всей этой бухгалтерии появилась новая проблема, связанная с устройством атома в модели Резерфорда, а именно: атом состоит из электронов, вращающихся вокруг ядра, расположенного в его центре.

Как вы помните, если встряхнуть электрон, он излучает свет. Под «встряхнуть» мы в данном случае имеем в виду «ускорить каким-либо образом». Электрон должен излучать свет, если с ним происходит что-то, кроме движения по прямой с постоянной скоростью.

Исходя из резерфордовского представления об атоме, где электроны вращаются вокруг ядра, очевидно, что траектории этих электронов – не прямые линии. Электроны должны двигаться по окружностям или эллипсам. В классическом мире это безусловно означает, что электроны движутся с ускорением и, что не менее очевидно, при этом они должны испускать свет. Каждый атом в вашем теле и все атомы в окружающем мире должны светиться, если классическая механика не врет. Таким образом, электроны должны терять энергию, отдаваемую в виде излучения, и по спирали сваливаться на ядро. В классической физике орбита электрона не может быть стабильной.



Возможно, все ваши атомы действительно излучают свет, просто не такой яркий, чтобы его можно было увидеть. В конце концов, ровно такая же логика применима к планетам Солнечной системы. Они должны испускать гравитационные волны – ускоряющийся массивный объект должен создавать рябь в гравитационном поле, по аналогии с тем как ускоряющийся заряд порождает колебания в электромагнитном поле. Так оно и есть. Если в этом и были какие-то сомнения, то их не осталось в 2016 году, когда исследователи, работающие в обсерваториях LIGO и Virgo, объявили, что гравитационные волны удалось зафиксировать[8] – они образовались от столкновения двух сближавшихся по спирали черных дыр в миллиарде световых лет от нас.

Однако планеты Солнечной системы гораздо легче черных дыр и движутся медленнее, тогда как каждая из тех двух черных дыр была примерно в тридцать раз тяжелее Солнца. Поэтому гравитационные волны, испускаемые соседствующими с нами планетами, действительно очень слабые. Мощность, генерируемая в виде гравитационных волн при вращении Земли, составляет около 200 Ватт, что равно потреблению энергии нескольких лампочек и абсолютно несущественно по сравнению с другими воздействиями, например с солнечной радиацией и приливными силами. Если бы излучение гравитационных волн было единственной силой, влияющей на орбиту Земли, то потребовалось бы более 1023 лет, чтобы она врезалась в Солнце. Так что, возможно, то же самое верно и для атомов: может быть, орбиты электронов не совсем стабильны, но их стабильность достаточна.

Это количественный вопрос, поэтому в уравнения классической электродинамики легко подставить конкретные числа и посмотреть, что получится. Ответ получается катастрофическим, потому как электроны должны двигаться гораздо быстрее планет, а электромагнетизм оказывается сильнее гравитации. Количество времени, которое потребовалось бы электрону, чтобы врезаться в ядро атома, получается равным примерно десяти пикосекундам. Это одна стомиллиардная доля секунды. Если бы обычная материя, состоящая из атомов, была столь недолговечна, кто-нибудь уже наверняка обратил бы на это внимание.

Эта проблема обеспокоила многих людей. Среди них особого упоминания заслуживает Нильс Бор, который в 1912 году какое-то время работал под руководством Резерфорда. В 1913 году Бор опубликовал серию из трех статей, позже названных просто «трилогия»: в них выдвинул одну из тех отважных, «взятых с потолка» идей, характерных для первых лет развития квантовой теории. Он задал вопрос: что, если электроны не могут по спирали упасть на атомное ядро, так как не имеют возможности находиться на любой «желаемой» орбите, а вместо этого закреплены на конкретных, вполне определенных орбитах? В атоме будет одна орбита с минимальным уровнем энергии, следующая – с чуть более высоким уровнем энергии, и так далее. Но электроны не могут подойти к ядру ближе, чем спустившись на самую нижнюю орбиту, и между орбитами они также находиться не могут. Оказалось, что допустимые орбиты квантуются.



Предположение Бора было не столь экзотическим, каким может показаться на первый взгляд. Физики изучали, как свет взаимодействует с различными газообразными элементами – водородом, азотом, кислородом и так далее. Они обнаружили, что свет, пропущенный через холодный газ, частично поглощается; аналогично, если пропустить электрический ток через трубку с газом, то газ начинает светиться (именно этот принцип лежит в основе работы флуоресцентных ламп, используемых по сей день). Но газы поглощали и излучали свет лишь с определенными частотами, свободно пропуская лучи других цветов. В частности, водород, простейший элемент, в атоме которого всего один протон и один электрон, демонстрировал очень упорядоченную картину частот излучения и поглощения.

В классическом атоме Резерфорда подобное было бы нонсенсом. Но в модели Бора, где электроны могут двигаться лишь по определенным орбитам, такому феномену сразу же нашлось объяснение. Хотя электроны и не могут зависать между разрешенными орбитами, они могут перепрыгивать с одной орбиты на другую. Электрон может упасть с высокоэнергетической орбиты на орбиту с меньшей энергией, испустив свет, обладающий энергией, равной разности энергий этих орбит, либо может перепрыгнуть на более высокоэнергетическую орбиту, поглотив необходимое количество энергии из падающего на него света. Поскольку сами орбиты оказались квантованными, то есть дискретными, мы должны наблюдать взаимодействие электронов и тех квантов света, которые обладают строго определенными энергиями. Вместе с идеей Планка о том, что частота света связана с его энергией, это позволяло объяснить, почему наблюдается излучение и поглощение света лишь определенных частот.

Сравнив свои прогнозы с эмиссией света, наблюдаемой в атоме водорода, Бор смог не просто постулировать, что для электронов допустимы лишь определенные орбиты, но и вычислить, что это за орбиты. Любой вращающейся частице свойственна величина под названием момент импульса, которую легко рассчитать: момент импульса равен произведению массы частицы, ее скорости и расстояния от центра до орбиты. Бор предположил, что орбита, которую может занимать электрон, должна обладать моментом импульса, кратным конкретной фундаментальной константе. А когда он сравнил ту энергию, которую электроны должны излучать при прыжке с орбиты на орбиту, с наблюдаемыми свойствами света, излучаемого атомом водорода, он понял, какая постоянная нужна для согласования данных. Это была постоянная Планка, h. Точнее ее модифицированная версия – приведенная постоянная Планка, ħ = h/2π.

Когда сталкиваешься с чем-то подобным, сразу появляется ощущение, что ты на верном пути. Бор пытался учесть поведение электронов в атоме и постулировал импровизированное правило, согласно которому они могут двигаться лишь по определенным квантованным орбитам. Чтобы это правило стало согласовываться с экспериментальными данными, к нему пришлось добавить новую естественную константу – и она оказалась равна той, которую был вынужден изобрести Планк, пытаясь объяснить поведение фотонов. Вся эта конструкция могла показаться шаткой и довольно небрежной, но вместе эти находки наводили на мысль, что в мире атомов и частиц происходит кое-что действительно важное, не желающее вписываться в священные правила классической механики. Сегодня идеи того периода иногда описываются в категориях «старой квантовой теории», которая противопоставляется «новой квантовой теории», сформулированной Шрёдингером и Гейзенбергом в конце 1920-х.