Квантовые миры и возникновение пространства-времени — страница 12 из 59

Идеи де Бройля были интригующими, однако совершенно не тянули на полноценную теорию. Сформулировал такую теорию Эрвин Шрёдингер, в 1926 году выдвинувший динамическую трактовку волновых функций: в частности, он сформулировал описывающее их уравнение, позже названное в его честь. Революции в физике, в том числе и в квантовой механике, как правило, дело молодых, но Шрёдингер явно стал исключением. Тон дискуссиям на Сольвеевском конгрессе 1927 года задавали Эйнштейн (сорок два года) и Бор (сорок четыре) – они казались величественными старцами. Гейзенбергу, как и Дираку, было двадцать пять, Паули – двадцать семь. На Шрёдингера в его зрелом возрасте тридцати восьми лет смотрели как на человека не первой молодости, который едва ли способен выдвинуть радикальную идею, подобную этой.

Обратите внимание на переход от де бройлевских «материальных волн» к шрёдингеровской «волновой функции». Хотя работы де Бройля сильно повлияли на Шрёдингера, его концепция оказалась гораздо более проработанной и заслуживает отдельного упоминания. Очевидно, что величина волны материи в любой точке выражалась некоторым вещественным числом, в то время как амплитуды, описываемые волновыми функциями, являются комплексными числами – суммой действительного и мнимого чисел.

Что еще более важно, первоначальная идея состояла в том, что каждый вид частиц будет ассоциирован с некоторой материальной волной. Но шрёдингеровская волновая функция устроена иначе: в его трактовке существует всего одна функция, описывающая все частицы во Вселенной. Столь простой переход привел науку к революционному понятию о квантовой запутанности.

⚪ ⚪ ⚪

Идеям Шрёдингера сильно добавило очков уравнение, описывающее изменение волновых функций с течением времени. Хорошее уравнение – все, что нужно физику. Из красивой идеи («у частиц есть волновые свойства») оно делает строгий, бескомпромиссный инструмент. Для человека «бескомпромиссный» – не самое лучшее качество, но для научной теории – то, что нужно. Это характеристика, обеспечивающая точные прогнозы. Когда мы говорим, что в учебниках по квантовой механике много времени уделяется решению уравнений, мы в основном имеем в виду уравнение Шрёдингера.

Именно уравнение Шрёдингера решала бы квантовая версия демона Лапласа, предсказывая будущее Вселенной. И хотя исходная форма уравнения предназначалась для работы с системами, состоящими из единичных частиц, на практике оно отражает гораздо более общую идею, в равной степени применимую к спинам, полям, суперструнам или любой другой системе, которую вы можете описать с помощью квантовой механики.

В отличие от матричной механики, пользующейся языком математических концепций, с которыми не имели дел большинство физиков того времени, уравнение Шрёдингера не слишком отличалось от уравнений Максвелла, описывавших электромагнетизм и по сей день красующихся на поношенных футболках студентов физфака. Волновую функцию можно визуализировать – как минимум убедить себя в том, что вам это удалось. Физическое сообщество не вполне понимало, что делать с Гейзенбергом, но к приходу Шрёдингера физики были готовы. Копенгагенская компания – в особенности юнцы Гейзенберг и Паули – не слишком тепло восприняла конкурирующие идеи, выдвинутые непримечательным стариканом из Цюриха. Но прошло совсем немного времени, и они стали мыслить в категориях волновых функций, как и все прочие.

В уравнении Шрёдингера присутствуют незнакомые символы, но понять его основной посыл несложно. Де Бройль предположил, что импульс волны увеличивается по мере того, как уменьшается ее длина. Шрёдингер предложил схожую вещь, но для энергии и времени: скорость изменения волновой функции пропорциональна имеющемуся у нее количеству энергии. Вот его знаменитое уравнение в самой общей форме:



Не будем углубляться в детали, но интересно посмотреть, как физики обращаются с подобными уравнениями. Здесь не обошлось без математики, однако в конечном итоге это всего лишь символьное выражение той идеи, которую мы уже изложили словами.

Ψ (греческая буква «пси») – это волновая функция. В левой части уравнения указана скорость, с которой волновая функция изменяется во времени. В правой части – константа пропорциональности, в которой учтена, в частности, приведенная постоянная Планка ħ, фундаментальная константа квантовой механики, а также i – квадратный корень из –1. На волновую функцию Ψ воздействует так называемый гамильтониан, или H. Гамильтониан можно сравнить с инквизитором, который спрашивает: «Сколько у тебя энергии?» Эту концепцию в 1833 году изобрел ирландский математик Уильям Роуэн Гамильтон, пытаясь переформулировать законы движения классической системы задолго до того, как гамильтониан стал играть центральную роль в квантовой механике.

Когда ученые начинают моделировать различные физические системы, первым делом они пытаются вывести математическое выражение для гамильтониана данной системы. Стандартный способ вывода гамильтониана примерно таков: суммируем энергии всех частиц по отдельности, а затем плюсуем сюда дополнительные члены, описывающие то, как частицы взаимодействуют друг с другом. Может быть, они отталкиваются друг от друга как бильярдные шары или оказывают друг на друга взаимное гравитационное воздействие. Для любого подобного взаимодействия существует свой особый гамильтониан. А зная гамильтониан, вы знаете и все остальное: это компактный способ выражения всей динамики физической системы.

Если квантовая волновая функция описывает систему с некоторым заданным значением энергии, гамильтониан просто равен этому значению, и тогда, следуя логике уравнения Шрёдингера, система продолжает делать одно и то же, поддерживая энергию на одном уровне. Но чаще, поскольку волновые функции описывают суперпозиции различных возможностей, система представляет собой комбинацию множества энергий. В данном случае гамильтониан захватывает по чуть-чуть от каждой из них. Из этого следует, что в правой части уравнения Шрёдингера содержится информация о том, сколько энергии несет каждая из составляющих волновой функции в квантовой суперпозиции: высокоэнергетические компоненты эволюционируют быстрее, низкоэнергетические – медленнее.

В данном случае действительно важен сам факт, что существует уравнение, четко определяющее динамику системы. Когда оно у нас есть, весь мир превращается в игровую площадку.

⚪ ⚪ ⚪

Волновая механика сильно всколыхнула науку, и в скором времени Шрёдингер, английский физик Поль Дирак и другие ученые продемонстрировали, что она, в сущности, эквивалентна матричной механике, подарив нам единую теорию квантового мира. Но почивать на лаврах было рано. Физики остались один на один с вопросом, над разрешением которого мы бьемся по сей день: что такое волновая функция на самом деле? Какой физический феномен она описывает, если вообще описывает?

С точки зрения де Бройля, его волны материи были нужны, чтобы направлять движение частиц, а не заменить их вообще. (Позже он развил эту идею, предложив теорию волны-пилота, которая и сегодня остается жизнеспособным подходом к объяснению основ квантовой механики, хотя и не популярна среди практикующих физиков.) Напротив, Шрёдингер стремился полностью избавиться от фундаментальных частиц. Изначально он надеялся, что его уравнение будет описывать локализованные пучки вибраций, каждый из которых локализован в относительно небольшой области пространства и поэтому кажется частицеподобным макроскопическому наблюдателю. Тогда можно было бы считать, что волновая функция представляет распределение массы в пространстве.

Увы, стремления Шрёдингера были сведены на нет его же собственным уравнением. Если взять волновую функцию, описывающую единственную частицу, приблизительно локализованную в некоторой области пустого пространства, то уравнение Шрёдингера ясно показывает, что будет с этой частицей дальше: она быстро распространится повсюду. Предоставленные сами себе волновые функции Шрёдингера совсем не похожи на частицы[9].

Недостающее звено оставалось за Максом Борном, коллегой Гейзенберга по матричной механике: волновую функцию следует трактовать как инструмент для расчета вероятности встретить искомую частицу в любой конкретной точке. В частности, мы должны взять как вещественную, так и мнимую часть комплексной амплитуды, возвести обе эти части в квадрат по отдельности и сложить два полученных числа. Так мы получаем вероятность наблюдения соответствующего результата. (Предположение, что речь идет именно о квадрате амплитуды, а не об амплитуде как таковой, содержится в сноске, которая была добавлена к статье Борна 1926 года в последний момент.) После того как мы пронаблюдаем волновую функцию, она коллапсирует и локализуется в той точке, где мы обнаружили частицу.

Знаете, кому не понравилась вероятностная интерпретация уравнения Шрёдингера? Самому Шрёдингеру. Он, как и Эйнштейн, ставил своей целью предоставить конкретное механистическое обоснование квантовых феноменов, а не просто создать инструмент, которым можно было бы пользоваться для расчета вероятностей. «Мне это не нравится, и я сожалею, что когда-либо имел к этому отношение», – ворчал он впоследствии. Смысл знаменитого мысленного эксперимента с котом Шрёдингера, где волновая функция кота эволюционирует (в соответствии с уравнением Шрёдингера) в суперпозицию «живого» и «мертвого», заключался не в том, чтобы заставить людей говорить: «Ух ты, какая таинственная эта квантовая механика». Эксперимент был призван подтолкнуть людей к мысли: «Позвольте, но ведь так не бывает». Но, насколько нам известно, так оно и есть.

⚪ ⚪ ⚪

Обширная интеллектуальная работа была проделана за первые три десятилетия двадцатого века. В течение XIX века физики собрали многообещающую картину, отражавшую природу материи и сил. Материя состоит из частиц, а силы передаются через поля, и все они подчиняются законам классической механики. Однако, столкнувшись с экспериментальными данными, они были вынуждены выйти за рамки этой парадигмы. Стремясь объяснить исходящее от объектов излучение, Планк предположил, что свет состоит из дискретных порций энергии, а Эйнштейн развил эту идею, допустив, что свет существует в форме частицеподобных квантов. Тем временем факт стабильности атомов и наблюдение за тем, как газы излучают свет, позволили Бору предположить, что электроны могут двигаться лишь по определенным разрешенным орбитам, иногда перескакивая с одной на другую. Гейзенберг, Борн и Йордан оформили эту исто