Квантовые миры и возникновение пространства-времени — страница 13 из 59

рию о вероятностных прыжках в полноценную теорию – матричную механику. Взглянув на нее под другим углом, де Бройль указал, что если мы будем трактовать материальные частицы, например электроны, как волны, то сумеем вывести квантованные орбиты Бора, а не просто постулировать их существование. На основании этого утверждения Шрёдингер разработал собственную полноценную квантовую теорию, в конечном итоге продемонстрировав эквивалентность матричной и квантовой механики. Несмотря на все чаяния, что волновая механика позволит избавиться от вероятностей как фундаментальной части теории, Борн показал, что правильное понимание волновой функции Шрёдингера таково: эта функция возводится в квадрат и получается вероятность наблюдать тот или иной результат измерения.

Уф! Неблизкий путь, проделанный за удивительно короткий период – от наблюдений Планка, сделанных в 1900 году, до Сольвеевского конгресса в 1927 году, когда новая квантовая механика была конкретизирована раз и навсегда. Колоссальная заслуга физиков начала XX века заключается в том, что они были готовы работать, опираясь на экспериментальные данные, и, пойдя таким путем, полностью отбросили фантастически успешные ньютоновские представления о классическом мире.

Однако их успехи в осознании последствий собственных открытий впечатляют гораздо меньше.

4Что не может быть познано, поскольку не существуетНеопределенность и дополнительность

Как-то раз останавливает постовой Вернера Гейзенберга за превышение скорости.

«Вы знаете, с какой скоростью ехали?» – спрашивает офицер.

«Нет, – отвечает Гейзенберг, – но я точно знаю, где нахожусь!»

Думаю, все согласятся, что шутки физиков – самые смешные. Но физическую суть они передают не слишком точно. Этот бородатый анекдот предполагает знакомство со знаменитым принципом неопределенности Гейзенберга, который обычно объясняется так: невозможно одновременно с точностью определить и скорость объекта, и его положение в пространстве. Но реальность гораздо глубже.

Дело не в том, что мы не можем знать координату и импульс, а в том, что одновременно они даже не существуют. Лишь в крайне специфических обстоятельствах можно утверждать, что у объекта есть конкретное местоположение – когда его волновая функция полностью сконцентрирована в одной точке пространства и является нулевой где бы то ни было еще, и ровно то же самое со скоростью. А когда одна из этих величин определена, другая, если мы ее измерим, может быть абсолютно любой. Чаще волновая функция описывает разброс обеих величин – так что ни у одной из них нет одного конкретного значения.

Тогда, в 1920-х, все это было далеко не столь очевидно. Тогда было естественно полагать, что вероятностная природа квантовой механики просто указывает на неполноту теории и что более детерминистическую, напоминающую классическую картину еще только предстоит разработать. Иными словами, считалось, что волновая функция характеризует степень нашего неведения о происходящем, а не является, как мы здесь утверждаем, его истинным отражением. Узнав о принципе неопределенности, многие первым делом пытаются найти в нем лазейки. Все эти попытки провалились, но при этом мы узнали много нового о том, в чем квантовая реальность принципиально отличается от привычного нам классического мира.

Отсутствие конкретных значений физических величин в самом сердце реальности, таких, которые более или менее прямо соотносятся с тем, что мы можем наблюдать, – одна из глубинных особенностей квантовой механики, которую непросто принять при первом знакомстве. Есть физические величины, которые не просто неизвестны, но даже не существуют, хотя нам кажется, что мы можем их измерить.

Квантовая механика вплотную подводит нас к зияющей пропасти между тем, что мы видим, и тем, что есть на самом деле. В этой главе мы рассмотрим, как этот разрыв проявляется в принципе неопределенности, а в следующей еще более ярко увидим его в феномене квантовой запутанности.

⚪ ⚪ ⚪

Принцип неопределенности обязан своему существованию тому факту, что отношение между координатой и импульсом (который равен произведению массы на скорость) в квантовой механике фундаментально отличается от такого же отношения в классической.

В классической механике можно представить, что мы измерим импульс частицы, отследив ее координату во времени и пронаблюдав, как быстро она движется. Но если мы имеем доступ только к одной из характеристик, то координата и импульс в данный момент времени полностью независимы друг от друга. Если я скажу вам, что в конкретный момент времени частица имеет определенную координату и более ничего, вы не будете знать, какова ее скорость, и наоборот.

Числа, которые необходимы для описания системы, физики называют степенями свободы данной системы. В ньютоновской механике, чтобы сообщить мне полную информацию о состоянии набора частиц, вы должны указать мне координату и импульс каждой из них; в данном случае степени свободы – это координаты и импульсы. Ускорение не является степенью свободы, поскольку оно может быть вычислено, когда известны все силы, воздействующие на систему. Суть степени свободы в том, что сама она не зависит ни от чего другого.

Когда мы переходим к квантовой механике и размышляем о шрёдингеровских волновых функциях, ситуация несколько меняется. Чтобы получить волновую функцию для единственной частицы, необходимо учесть все точки, в которых потенциально может находиться эта частица, когда мы ее наблюдаем. Затем каждому из этих местоположений присвоим амплитуду, комплексное число с таким свойством: квадрат каждого такого числа равен вероятности обнаружить частицу в данной точке. Существует ограничение: сумма квадратов всех этих чисел в точности равна единице, поскольку общая вероятность найти частицу в любом конкретном месте равна единице. (Иногда вероятности выражаются в процентах, каждый процент составляет одну сотую от общей вероятности; вероятность 20 % эквивалентна вероятности 0,2.)

Обратите внимание: здесь мы не упоминаем ни скорость, ни импульс. Дело в том, что в квантовой механике нам не приходится отдельно указывать импульс, как это делалось в классической механике. Вероятность получить при измерении определенную скорость полностью определяется волновой функцией, заданной для всех возможных координат. Скорость не является отдельной степенью свободы, не зависимой от координаты. Основная причина кроется в том, что волновая функция – это, как известно, волна. В отличие от классической частицы, здесь у нас нет единственной координаты и единственного импульса, а есть функция всех возможных координат, и эта функция обычно колеблется вверх-вниз. От темпа этих колебаний зависит, что мы увидим, если попробуем измерить скорость или импульс.

Рассмотрим простую волну-синусоиду, колеблющуюся вверх и вниз регулярным образом и распространяющуюся в пространстве. Подставим такую волновую функцию в уравнение Шрёдингера и зададимся вопросом, как она будет изменяться со временем. Мы увидим, что у синусоиды есть четко определенный импульс и что чем меньше длина волны – тем выше ее скорость. Но синусоидальная волна не имеет определенного положения; напротив, она находится повсюду. Более типичная форма волны представляет собой некую смесь волнового пакета, локализованного в одной точке, и идеальной синусоиды с четкой длиной волны, распределенной по всему пространству, и не будет соответствовать конкретной координате или конкретному импульсу, а будет представлять некую смесь обеих величин.

В этом и заключается суть дилеммы. Если мы попытаемся локализовать волновую функцию в пространстве, то ее импульс станет все более и более неопределен, а если захотим ограничить ее определенной длиной волны (и соответственно, импульсом), ее местоположение будет становиться все более размытым. Это и есть принцип неопределенности. Дело не в том, что мы не можем знать обе величины одновременно; это просто факт устройства волновых функций: если координата частицы сосредоточена вблизи конкретного значения, то ее импульс оказывается совершенно неопределен, и наоборот. Старые добрые классические свойства под названием «координата» и «импульс» – это не величины с реальными значениями, а возможные результаты измерений.



Иногда люди ссылаются на принцип неопределенности за пределами нашпигованных уравнениями книг по физике. Поэтому здесь важно подчеркнуть, о чем не говорит этот принцип. Речь не идет о том, что «вообще все неопределенно». В конкретном квантовом состоянии определенной может быть либо координата, либо импульс; а вот быть определенными одновременно они не могут.

Кроме того, принцип неопределенности не говорит, что мы непременно нарушим систему, когда проведем измерение. Если у частицы есть определенный импульс, то мы вполне можем измерить его и ничего не изменится. Суть в том, что не бывает состояний, в которых и координата, и импульс одновременно были бы определенными. Принцип неопределенности – это утверждение о природе квантовых состояний и их связи с наблюдаемыми величинами, а не о физическом акте измерения.

Наконец, этот принцип никак не характеризует ограниченность наших знаний о системе. Мы можем точно знать квантовое состояние, и это будет все, что нам нужно знать о нем, и все равно мы не сможем с абсолютной точностью предсказать результаты всех возможных будущих наблюдений. Идея о том, что «мы чего-то не знаем» при рассмотрении конкретной волновой функции, – пережиток нашей интуитивной привычки считать, что реальность действительно такова, какой мы ее наблюдаем. Квантовая механика приучает нас к иному.

⚪ ⚪ ⚪

Иногда высказывается следующая идея, навеянная принципом неопределенности: якобы квантовая механика противоречит логике. Это глупо. Логика выводит теоремы из аксиом, и полученные теоремы просто истинны. Аксиомы могут быть применимы или неприменимы в конкретной физической ситуации. Теорема Пифагора – квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов – корректна как формальный вывод из аксиом евклидовой геометрии, хотя эти аксиомы и не соблюдаются, если говорить об искривленной поверхности, а не о плоской поверхности стола.