Сам феномен спина понять не сложно – это всего лишь вращение вокруг оси, подобно вращению Земли или балерины, выполняющей пируэт. Но как и в случае с энергиями электрона, вращающегося вокруг атомного ядра, в квантовой механике при измерении спина частицы мы можем получить лишь определенные дискретные значения.
Например, для электрона существует всего два возможных результата измерения спина. Сначала выберем ось, вдоль которой будем измерять спин. При взгляде вдоль этой оси мы в любом случае обнаружим, что электрон вращается либо по часовой стрелке, либо против нее, причем всегда с одинаковой скоростью. Такие спины принято называть «верхним» и «нижним». Помните о «правиле правой руки» (правиле буравчика): если сжать четыре пальца правой руки в направлении вращения, то отставленный большой палец будет направлен вдоль соответствующей вращению вертикальной оси.
Вращающийся электрон подобен крошечному магниту, у которого, как и у Земли, есть северный и южный магнитные полюса; ось спина указывает на северный полюс. Один из способов измерить спин конкретного электрона – пропустить его через магнитное поле, которое немного отклонит электрон в зависимости от того, как ориентирован его спин. (Техническая деталь: чтобы это сработало, магнитное поле должно быть правильным образом сфокусировано: в одних местах напряженность поля должна быть более высокой, а в других – более низкой[10].)
Если я скажу вам, что электрон имеет определенный суммарный спин, то для данного эксперимента вы можете сделать следующий прогноз: электрон будет отклоняться вверх, если ось его спина ориентирована строго по внешнему полю, и отклоняться вниз, если ось спина ориентирована строго в противоположном направлении, а также отклоняться на некоторый промежуточный угол, если его спин будет ориентирован как-то иначе. Но в реальности мы наблюдаем другое.
Такой эксперимент был впервые проведен в 1922 году немецкими физиками Отто Штерном (ассистентом Макса Борна) и Вальтером Герлахом еще до того как идея спина была четко сформулирована. То, что они увидели, было поразительно. Электроны действительно отклоняются, проходя через магнитное поле, но либо строго вверх, либо строго вниз, без всяких промежуточных вариантов. Если вращать магнитное поле, то электроны по-прежнему отклоняются в направлении того поля, через которое проходят, либо против него, но по-прежнему никаких промежуточных значений. Как и энергия электрона, вращающегося вокруг атомного ядра, измеренный спин оказывается квантованным[11].
Это кажется удивительным. Даже если мы привыкли к мысли, что энергия электрона, вращающегося вокруг ядра, может иметь лишь определенные дискретные значения, по крайней мере эта энергия кажется объективным свойством электрона. Но то, что мы называем спином электрона, дает нам разные ответы в зависимости от того, как мы его измеряем. И независимо от того, в каком именно направлении мы измеряем спин, мы можем получить лишь один из двух возможных результатов.
Чтобы убедиться, что мы не сошли с ума, давайте сумничаем и пропустим электрон мимо двух магнитов подряд. Как вы помните, правила учебника квантовой механики говорят нам, что если мы получим определенный результат измерения и немедленно измерим ту же самую систему снова, то снова получим точно такой же результат. Действительно, так и происходит: если электрон отклоняется вверх одним магнитом (и следовательно, имеет верхний спин), он всегда будет отклоняться вверх и следующим магнитом, ориентированным таким же образом.
А что если повернуть один из магнитов на 90 градусов? Так мы расщепим исходный пучок электронов на два, один с верхним спином, другой – с нижним (если взять за отправную точку для измерения вертикально ориентированный магнит), затем возьмем электроны с верхним спином и пропустим их сквозь магнитное поле, которое ориентировано горизонтально. Что произойдет тогда? Может, они затаят дыхание и откажутся лететь, поскольку они вертикально ориентированные электроны с верхним спином, а мы пытаемся измерять их спин в направлении горизонтальной оси?
Нет. На самом деле второй магнит разделит электроны с верхним спином на два пучка. Половина из них будет отклоняться вправо (по направлению, заданному вторым магнитом), а половина – влево.
Чистой воды безумие. Наша интуиция, основанная на классической картине мира, подсказывает, что существует некая «ось, вокруг которой вращается электрон», и кажется логичным, что спин, характеризующий вращение вокруг именно этой оси, и будет квантован. Но эксперименты наглядно показывают, что ось, вокруг которой квантован спин, не зависит от самой частицы: можно выбрать любую ось, какую вам заблагорассудится, повернув магнит соответствующим образом, и спин будет квантоваться относительно этой оси.
В данном случае мы сталкиваемся с еще одним проявлением принципа неопределенности. Как мы уже знаем, «координата» и «импульс» не являются свойствами электрона – это просто связанные с ним феномены, которые мы можем измерить. В частности, ни одна частица не может одновременно обладать определенными значениями координаты и импульса. Как только мы определяем точную волновую функцию для координаты, вероятность наблюдения любого конкретного значения импульса полностью фиксируется, и наоборот.
То же касается «вертикального спина» и «горизонтального спина»[12]. Это не отдельные свойства, которыми может обладать электрон: это просто разные величины, которые мы можем измерить. Если выразить квантовое состояние в терминах вертикального спина, то вероятность наблюдения левого или правого горизонтального спина будет полностью фиксированной. Результаты измерений, которые мы можем получить, зависят от базового квантового состояния, которое можно выразить различными, но эквивалентными способами. Принцип неопределенности отражает тот факт, что в любом квантовом состоянии мы можем провести различные измерения, не совместимые друг с другом.
Системы с двумя возможными результатами измерений настолько распространены и полезны в квантовой механике, что для них придумали милое название: кубиты. Идея в том, что классический «бит» может иметь всего одно из двух значений: 0 или 1. Кубит (квантовый бит) – это система, которая допускает два возможных результата измерения, скажем верхний и нижний спины вдоль некоторой оси. Состояние типичного кубита – это суперпозиция обеих возможностей, каждая из которых характеризуется некоторым комплексным числом, амплитудой вероятности каждой из альтернатив.
Квантовые компьютеры оперируют кубитами по такому же принципу, по которому обычные компьютеры работают с классическими битами.
Волновую функцию кубита можно записать так:
Символы a и b обозначают комплексные числа, представляющие, соответственно, амплитуды вероятности верхнего и нижнего спинов. Отдельные слагаемые волновой функции, представляющие различные возможные результаты измерения, в данном случае – верхний и нижний спины, называются «компоненты». В этом состоянии вероятность наблюдать частицу с верхним спином будет равна |a|2, а вероятность наблюдать частицу с нижним спином – |b|2. Если, например, и a, и b были бы равны квадратному корню из 1/2, то вероятность наблюдать верхний или нижний спин составила бы 1/2.
Кубиты помогают понять критически важное свойство волновых функций: каждая из них подобна гипотенузе прямоугольного треугольника, а катеты этого треугольника соответствуют амплитудам каждого возможного результата измерения. Иными словами, волновая функция похожа на вектор, то есть на стрелку, обладающую длиной и направлением.
Вектор, о котором мы говорим, не указывает направление в реальном физическом пространстве, например «вверх» или «на север». Нет, скорее он направлен в пространстве всех возможных результатов измерений. Если речь идет о кубите одного спина, то это будет верхний или нижний спин (если мы выберем какую-либо ось, вдоль которой будем его измерять). Когда мы говорим, что «кубит находится в суперпозиции верхнего и нижнего спинов», мы фактически имеем в виду: «вектор, представляющий квантовое состояние, имеет одну компоненту, описывающую верхний спин, и другую компоненту, описывающую нижний спин».
Естественно полагать, что верхний и нижний спины указывают на противоположные направления: просто посмотрите на стрелки. Однако как квантовые состояния они перпендикулярны друг другу: кубит, полностью соответствующий верхнему спину, не имеет компоненты, которая соответствовала бы нижнему спину, и наоборот. Даже волновая функция для координаты частицы является вектором, хотя обычно мы представляем ее как гладкую функцию, распределенную в пространстве. Фокус в том, чтобы считать каждую точку пространства определяющей отдельную компоненту, а волновую функцию – суперпозицией всех этих компонент. Существует бесконечное количество таких векторов, поэтому пространство всех возможных квантовых состояний, именуемое гильбертовым пространством, является бесконечномерным для координаты любой отдельной частицы. Вот почему гораздо удобнее рассуждать о кубитах. Два измерения представить проще, чем бесконечное количество измерений.
Когда в нашем квантовом состоянии всего две компоненты, а не бесконечное множество, непросто представить состояние как «волновую функцию». Она не слишком волнистая и не похожа на гладкую функцию в пространстве. Но на самом деле думать об этом нужно совершенно иначе. Квантовое состояние – это не функция в обычном пространстве, а функция в абстрактном «пространстве результатов измерений», которое в случае кубита предусматривает всего две возможности. Если наблюдаемый нами феномен – это координата отдельной частицы, то квантовое состояние присваивает амплитуду каждой возможной координате, и это напоминает волну в обычном пространстве. Однако это необычный случай; по своей природе волновая функция более абстрактна, и, когда в ней участвует более одной частицы, ее становится трудно визуализировать. И тогда терминология «волновой функции» нам уже мешает. Кубиты – отличная вещь хотя бы потому, что у такой волновой функции всего две компоненты.