Квантовые миры Стивена Хокинга — страница 18 из 33

и наблюдательные признаки, которые могли бы подсказать, пока получены не были.

Хокинг трактовал стрелу времени с точки зрения термодинамики — и это действительно ценное и очень важное понимание. Но если вы хотите узнать, почему вчера раз за разом остается в неизменном прошлом, завтра наступает на следующий день, а настоящее — то, где вы проживаете прямо сейчас, термодинамика вряд ли может ответить на этот вопрос. И пока что, по сути, нет никого, кто бы смог.

К примеру, в квантовой механике соотношение неопределенностей «энергия — время» накладывает специфические ограничения на саму процедуру измерения времени, тесно связанную с множественным характером темпоральной реальности. Из вероятностного характера квантовой физики можно делать потрясающие модели той же суперсимметричной М-теории, однако представления о времени оказались довольно устойчивыми даже для «транссингулярных бран». А стандартная квантовая теория вообще использует время как самую настоящую классическую переменную, не приписывая ей какие-то новые сущности. Тем не менее, течение времени в микромире имеет свои особенности. Прежде всего, это, конечно же, наличие соотношения неопределенности «время — энергия»: ∆t∆E≥ħ, гласящей, что мы можем уточнить либо изменение энергии, либо время, за которое оно произошло. Во-вторых, весь квантовый мир пронизан колебаниями, определяемыми через частоту опять-таки временными характеристиками. Ну и, в конце концов, само выражение для планковского кванта действия из соображений размерности распадается на «энергетическую» и «темпоральную» части.

И хотя чаще всего парадоксы квантовой физики связаны с распространением обыденных макроскопических понятий пространства и времени на квантовые объекты, какой-то аналог «стрелы времени» должен существовать и в микромире. Впрочем, микрочастицы вовсе не обязаны принадлежать только к знакомому нам частному случаю пространства-времени (математики называют его гладким топологическим многообразием Минковского) в виде обычного евклидова пространства трех измерений из школьных учебников, дополненного координатной осью времени. Вполне возможно, что они «обитают» в своем специфическом микропространстве, в которое переходит многообразие Минковского на «планковских дистанциях», выражаемых дробными миллиметрами с тридцатью нулями. В этой таинственной глубине могут происходить совершенно невероятные вещи, предсказываемые формальными математическими моделями, и далекие, даже астрономические расстояния «здесь» могут соответствовать неразличимой близости «там». Вот, кстати, и еще один вариант разгадки ЭПР-парадокса, причем несравненно более «физичный», чем чудотворное квантовое сознание наблюдателей и «разумные потенциалы» микрочастиц, встречающиеся у отдельных современных исследователей.

Фантастика? Однако вспомним некоторые факты из жизни современной квантовой теории поля, описывающей элементарные частицы. Общепризнанно (насколько подобное можно заявить сегодня), что в основе всех физических явлений лежат квантовые поля, дискретными составляющими которых выступают элементарные частицы. Эти частицы постоянно участвуют в сложных процессах взаимопревращения, возникновения и исчезновения.

Для любопытствующих я весьма бы рекомендовал пару лучших книг по данной тематике: «Атомную физику» моего учителя Александра Ильича Ахиезера и «Физику элементарных частиц» Льва Борисовича Окуня, крупнейшего мирового авторитета в данной области. Удивительно, но пространственно-временные представления, которые использует квантовая теория поля, по своей сути являются макроскопическим миром Минковского!

В свое время создание классической механики способствовало формированию такого идеала научного знания, согласно которому теория должна объяснять явления, как четко причинно-обусловленные, происходящие в пространстве и времени, на основе однозначных законов механики Галилея — Ньютона. Высшее развитие принцип классической предопределенности явлений или детерминизма получил в работах знаменитого французского физика и философа Пьера Симона Лапласа. Он писал:

Все явления — даже те, которые по своей незначительности как будто не зависят от великих законов природы, суть следствия столь же неизбежные этих законов, как обращения Солнца. Не зная уз, соединяющих их с системой мира в ее целом, их приписывают конечным причинам или случаю, в зависимости от того, происходили ли и следовали они одно за другим с известной правильностью, или же без видимого порядка, но эти мнимые причины отбрасывались по мере того как расширялись границы нашего знания и совершенно исчезли перед здравой философией, которая видит в них лишь проявления неведения, истинная причина которого мы сами. Всякое имеющее место явление связано с предшествующими на основании того принципа, что какое-либо явление не может возникнуть без производящей его причины.

Детерминизм Лапласа предполагал однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицания объективной случайности.

Модель времени Лапласа была органично связана с представлениями об однозначной предопределенности физических явлений. Оказалось, что и теоретикам очень удобно оперировать понятиями четырехмерного пространства с тремя геометрическими координатами и одной временной.

В простейшем случае движение тела можно изобразить на плоскостной диаграмме, откладывая по одной координате значения времени, а по другой — пройденного пути. Если тело движется с определенной скоростью, то через определенные интервалы времени после начала движения оно сместится от начала своего пути на соответствующие дистанции. На диаграмме эти события отобразятся точками, через которые можно провести линию. Эта линия, образуемая из множества событий-точек, в истории тела называется мировой линией.

В первой четверти координатной плоскости, где и время, и значения пути положительны, мировая линия ведет себя вполне логично. В какой-то мере можно представить себе физически и движение вдоль мировой линии во второй четверти, где время положительно, а путь — отрицателен. В нашем обыденном мире это может означать возвращение в исходную точку. В этом смысле путь может показаться величиной отрицательной: двигаясь по нему, мы удаляемся от нужного нам пункта, вместо того чтобы приближаться к нему.

Но уж совсем необъяснимы с позиций обыденного мира случаи с отрицательным временем. Что это означает? Принципиальную возможность движения в прошлое? Но ведь время, насколько нам всем известно, не может течь вспять…

Мировая линия может изменять свое положение в пространстве в зависимости от того, с какой скоростью происходит движение. Если бы мы могли двигаться мгновенно, то она могла бы попросту встать вертикально. Но физически это невозможно, самая большая скорость, достижимая на сегодняшний день, — это скорость света. Значит, мировая линия должна быть ограничена прямыми, показывающими распространение света, это будут т. н. световые конусы.

Все эта время мы рассматривали двухмерный случай, но наш мир, как уже говорилось, имеет четыре измерения. Значит, мировая линия может помещаться внутри некоторого светового конуса, очерченного мировыми линиями света. Особенно интересна поверхность конуса прошлого, лежащего в той области, где время отрицательно. Ведь на этой поверхности находится то, что мы можем увидеть. В самом деле: видеть — это, говоря иначе, воспринимать световые лучи. Но пока они донесут информацию от источника до нашего глаза, пройдет какое-то время, значит, видеть мы можем только то, что уже произошло.

Следующие интереснейшие парадоксы физического времени можно встретить в микромире, рассматривая античастицы и обращение времени. Античастица — это частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от нее знаками некоторых характеристик взаимодействия (зарядов, таких как электрический и цветовой, барионное и лептонное квантовое число). Элементарная частица — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы являются бесструктурными и могут считаться первичными фундаментальными частицами. Начиная с тридцатых годов прошлого века было открыто несколько сотен элементарных частиц.

Само определение того, что называть «частицей» в паре частица-античастица, в значительной мере условно. Однако природа состоит именно из «частиц», и соответствующие им античастицы определяются совершенно однозначно. Знаменитые теоретики XX века Ричард Фейнман и Джон Уилер построили оригинальную модель античастиц как обычных частиц, живущих «вспять во времени». Парадоксально, но этого оказалось вполне достаточно для определения их свойств. Следуя идеям Фейнмана — Уилера, Хокинг представил, что если античастица участвует в некотором процессе, скажем, испускания кванта электромагнитного поля, то его вероятность будет в точности равна вероятности обратного процесса поглощения точно такого же фотона обычной частицей.

Это, конечно, еще далеко не обратный поток времени, однако, если существуют антимиры, то и макроскопические процессы в них будут происходить «обратным образом». Вообще же говоря, подобная операция обращения времени носит название темпоральной инверсии (Т-инверсии, или обращения времени). Таким образом, действие Т-инверсии на состояние с определенным импульсом и энергией дает исходное состояние с начальными параметрами и координатами. Это объясняется тем, что после обращения времени следует пространственная инверсия (Р-инверсия, или пространственное обращение), изменяющая знаки у пространственных переменных и возвращающая микросистему в исходное состояние.

А вот как сам Фейнман авторским образом применял концепцию темпоральных инверсий ко вполне обычному процессу рассеяния электрона в веществе: «Обычным способом такой процесс может быть описан следующим образом… В некоторый момент t