Квантовые миры Стивена Хокинга — страница 22 из 33

Сомнения усилились после открытия глюонов. Хотя это типичные бозоны и исполняют роль связывающего звена в кварковых структурах, они вместе с тем могут сами рождать новые глюоны, которые в свою очередь склеивают их между собой. Получается, что четкой границы между свойствами бозонов и фермионов нет, и те же глюоны имеют двойственную природу.

К идее бозон-фермионного родства теоретики пришли, анализируя уравнения, которым подчиняются эти частицы. Они придумали, как записать эти уравнения в виде, симметричном для целых и полуцелых спинов. А если есть симметрия, то стандартные методы теории Галуа позволяют рассчитать соответствующие мультиплеты: как говорится, это уже дело техники.

Новая симметрия получила название суперсимметрии. Она утверждает, что при перестановке бозонных и фермионных частиц физические законы должны оставаться неизменными. Это как бы зеркальное отражение природы, при котором фермионы превращаются в бозоны, а бозоны — в фермионы. Отсюда сразу же следует, что у каждого бозона должен быть партнер — фермион, и наоборот. Наряду с известными нам кварками-фермионами в природе должны быть еще кварки-бозоны и целая россыпь состоящих из них еще не открытых элементарных частиц.

У электрона, позитрона, нейтрино также должны быть партнеры — бозоны. Еще не открытый на опыте партнер, его называют фотино, есть и у частицы света фотона. Словом, все частицы в природе должны иметь своего суперсимметричного партнера. Часто один их них — легкая частица, иногда даже без массы покоя, как фотон или нейтрино, а второй очень тяжелый. Например, бозонный электрон весит, по крайней мере, в сорок тысяч раз больше обычного электрона. Не меньшая масса у бозонного нейтрино и у фотино. К таким выводам приводят и расчеты, и экспериментальные данные, ведь если бы частицы были легкими, для их рождения в ядерных реакциях требовалось бы меньше энергии, и они давно были бы обнаружены. Некоторые суперсимметричные партнеры могут быть в миллиарды и даже в миллиарды миллиардов раз тяжелее протона. Ни космические лучи, ни один из действующих ускорителей не обладает достаточной энергией, чтобы породить такие тяжелые крупинки материи. В глазах физиков идея суперсимметрии выглядит чрезвычайно привлекательной и многообещающей, однако пока это только гипотеза. Чтобы она стала доказанным фактом, нужно открыть хотя бы некоторые из предсказанных ею частиц, например бозонные кварки или суперпартнеров электрона и нейтрино. Тем не менее это не мешает ученым использовать идею суперсимметрии в своих теоретических исследованиях, и в первую очередь — для построения квантовой теории тяготения.

Вернемся к гравитону — гипотетическому кванту поля тяготения. Если верна гипотеза суперсимметрии, у него тоже есть партнер — гравитино. Это квант калибровочного поля, различающего фермионные и бозонные частицы. Вместе с гравитоном он образует семейство двух гравичастиц. У бозона-гравитона спин равен двум, у фермиона-гравитино — трем вторым. Гравитон подобен фотону и не имеет массы покоя, всегда двигаясь со скоростью света. Масса гравитино точно неизвестна, но по оценкам, по-видимому, раз в сто больше протонной, то есть не меньше, чем у ядра серебра, поэтому гравитино рождается на очень малых расстояниях, меньших тысячной диаметра протона. Под его влиянием поле тяготения приобретает совершенно новые черты — становится супергравитацией. Теория Эйнштейна для нее уже непригодна. Здесь нужна новая теория, объединяющая квантовую механику, идею суперсимметрии и общую теорию относительности. Она и была создана усилиями физиков многих стран.

Изучение супергравитации еще только начинается. Главное препятствие — отсутствие экспериментальных данных. Некоторые косвенные сведения дает лишь космология. Эволюция Вселенной в ранний период ее жизни, когда она представляла собой смесь из быстро рождающихся, распадающихся и взаимопревращающихся частиц, должна была зависеть от свойств гравитино. Сравнивая различные теоретические космологические сценарии развития Вселенной с астрофизическими наблюдениями, можно сделать некоторые грубые оценки.

Начиная с античных времен естествоиспытатели и философы задаются вопросом: не из дискретных ли частей состоят пространство и время? Действительно ли окружающий нас объем непрерывен или больше похож на кусок материи, сотканной из отдельных волокон? Если бы мы могли наблюдать чрезвычайно малые объекты, то увидели бы атомы пространства, неделимые мельчайшие частицы объема? А как быть со временем: плавно ли происходят изменения в природе — или мир развивается крошечными скачками, действуя, словно компьютер?

Как-то, будучи еще ассистентом профессора Сиамы, Хокинг сделал попытку распространить принципы квантового мира на окружающее пространство. Тогда у него получилось, что оно должно состоять из определенных квантовых единиц площади и объема, производных от длины Планка, связанной с силой гравитации, величиной квантов и скоростью света. Из этого исследования Хокинг сделал вывод, что длина Планка определяет сверхмикроскопический масштаб, при котором геометрию пространства уже нельзя считать непрерывной. Самая маленькая возможная площадь, отличная от нуля, примерно равна квадрату длины Планка, а наименьший объем, отличный от нуля, — куб длины Планка. Квант объема настолько мал, что в кубическом сантиметре таких квантов больше, чем кубических сантиметров в видимой Вселенной.

Однако профессор Сиама посчитал выводы своего ассистента недостаточно обоснованными и предложил продолжить исследования. И тут Хокинг выдвинул гипотезу, что окружающий нас мир не исчерпывается тремя известными нам измерениями — длиной, шириной и высотой, — и в нем есть еще скрытые, не видимые нами пространственные измерения. При этом оказалось, что если гравитация связана с кривизной четырехмерного пространства-времени, то с высшими измерениями связаны другие поля. Главный вывод Хокинга: новая теория квантовой гравитации позволяла совершенно по-иному взглянуть на происхождение Вселенной и представить, что творилось не только сразу после Большого взрыва, но и до него. После смерти Хокинга эту тему продолжают развивать такие видные теоретики, как Роджер Пенроуз и Кип Торн, так что не исключено, что нам с вами еще посчастливится узнать ответ на самую жгучую загадку Мироздания — что же действительно предшествовало рождению нашего Мира.

В дальнейшем при исследовании квантовой гравитации Хокингу пришлось рассчитывать в основном лишь на теорию. Для этого ему пришлось изучать и сравнивать различные ее варианты, отбирая те, которые используют меньшее число предположений и более последовательны. Это напоминало, по признанию самого теоретика, разгадывание трудных кроссвордов, где для каждой колонки или строки пустых клеток можно найти несколько вариантов подходящих слов, но их взаимное расположение дает единственно правильное решение.

Однако, как неоднократно замечал в своих выступлениях профессор Хокинг, даже в простейшем варианте новая теория чрезвычайно сложна математически. При этом он обязательно рассказывал исторический анекдот про Эйнштейна: «С тех пор как на теорию относительности навалились математики, я и сам перестал ее понимать».

«Но по сравнению с теорией супергравитации, — добавлял Хокинг, — общая теория относительности легкое чтение!

В процессе разработки теории квантовой гравитации Хокинг предсказал удивительное явление, когда фотоны различных энергий должны перемещаться с разными скоростями и достигать наблюдателя в разное время. Пока еще точность современных приборов в сотни раз ниже необходимой, но уже в недалеком будущем планируется запустить спутниковую обсерваторию, оборудование которой позволит провести долгожданный эксперимент.

Когда в миллиардах световых лет от нас происходят чудовищные взрывы звездных объектов, то в окружающее их пространство устремляются гигантские потоки радиации. В соответствии с теорией петлевой квантовой гравитации частичка такой радиации — фотон, движущийся по спиновой сети, в каждый момент времени занимает некоторое пространство. Дискретная природа пространства заставляет радиацию более высокой энергии перемещаться немного быстрее. Разница ничтожна, но в ходе космического путешествия эффект накапливается миллиардами лет и может наблюдаться в околоземном пространстве.

Хотя силовое воздействие всемирного тяготения буквально пронизывает всю без исключения нашу среду обитания, его кванты в виде частиц-гравитонов еще не наблюдал ни один исследователь. Убежденность в их существовании исходит в основном от физиков-теоретиков, которые, основываясь на квантовой механике, утверждают, что все без исключения силовые поля должны состоять из элементарных энергетических порций — квантов. Проблемы наблюдения отдельных гравитонов обусловлены его чрезвычайно слабым взаимодействием с веществом, лежащим за границей чувствительности современных детекторов, ведь оно более чем на сорок (!) порядков слабее электромагнитных сил. Даже по сравнению с самой неуловимой частицей — нейтрино, для поисков которой используются толща мирового океана и сверхглубокие шахты, взаимодействие гравитона выглядит в биллионы миллиардов раз слабее. Каким же образом сила всемирного притяжения управляла рождением Вселенной, определяет современный облик нашего Мира и когда-нибудь через десятки миллиардов лет поставит последнюю точку в истории нашей реальности?..

Могущество самого грандиозного силового поля Мироздания основывается на неисчислимом количестве ее всепроникающих квантов, составляющих всемирный океан гравитационной энергии, в потоках которой плывут взаимодействующие тела. Если воспользоваться умозрительной моделью, то гравитон будет подобен летящему со скоростью света винтообразно закрученному вихрю энергии, чем-то напоминающему микроскопический торнадо. По сравнению со всеми известными элементарными частицами гравитон, по предсказаниям теоретиков, должен быть самой «закрученной» частицей, ведь ее спин вдвое больше, чем у фотона, и вчетверо превышает спин электрона и нейтрино.

Вот какими удивительными свойствами обладают кванты с детства привычного для нас поля земного притяжения. Что же говорить о квантовых образах иных моделей гравитационных полей, иногда имеющих несколько компонентов с различными спинами. Примером могут служить гравифотоны и гравискаляры, здесь ситуация отдаленно напоминает электромагнитное поле с его магнитной и электрической компонентами. Теория говорит, что взаимодействовать с веществом они должны столь же слабо, как и гравитон, но в отличие от него это довольно массивные частицы с собственной массой покоя. Они могут ускоряться и замедляться, а переносимые ими силы гравитации обрываются в пространстве более резко, чем гравитонные. В этом отношении новые гравичастицы, предсказываемые теоретиками, похожи на мезоны, переносящие ядерные силы. Только мезоны являются довольно тяжелыми, в триста раз массивнее электрона, масса же гравичастиц пока еще известна лишь очень приблизительно. Скорее всего, они чрезвычайно легкие, может быть, даже в сотни триллионов раз легче электрона. Для сравнения: электрон на столько же легче средней молекулы.