Квантовые миры Стивена Хокинга — страница 25 из 33

ражаемом путешествии в бездну провала застывшей звезды — коллапсара.

Вообще говоря, в некоторых областях стандартных теорий и в большинстве неустоявшихся инноваций довольно часто встречаются не только «принципиально ненаблюдаемые» объекты в виде виртуальных частиц и тех же кварков, но и всяческие сингулярности, бесконечности, расходимости. В одной из своих последних работ Хокинг рассмотрел целый класс «принципиально квантово-нелокальных систем и объектов», причем эта квантовая нелокальность материальных тел распространяется даже не на Метагалактику, а на всю сущий Мир, захватывая еще и иррациональную область индивидуального сознания.

В той статье Хокинг отметил и серьезную проблему квантовой теории поля, связанную с возникновением при теоретических расчетах «духов» — состояний микрообъектов с отрицательной вероятностью. Вообще говоря, вероятность событий может быть любым числом от нуля до единицы. Для невозможного события вероятность равна нулю, а для полностью достоверного — единице («стопроцентная вероятность»). В чем же может состоять физический смысл отрицательной вероятности? Этот вопрос до сих пор в немалой степени занимает внимание теоретиков.

Мысли Хокинга дополнялись рассуждениями патриарха космологии Уилера о том, что сверхбольшое и сверхмалое может смыкаться в своей природе. А поскольку сверхпространство, в котором, собственно говоря, и происходит расширение нашей Вселенной, вполне может быть неметрическим, то и в инфрамикромире планковских масштабов метрические отношения могут неузнаваемо измениться или даже совсем исчезнуть.

Профессор Хокинг указывал, что существование эталонов длины и времени связано с миром атомов и молекул, где длина соизмерима с периодом кристаллической решетки, а длительность с колебаниями молекул и атомов. Но переход к планковским масштабам аналогичен сравнению Метагалактики с атомом! Естественно, что при этом все метрические эталоны могут потерять свой смысл вместе с самими понятиями длины и времени. Собственно говоря, метрические отношения на данном уровне реальности могут иметь иной качественный характер, например, содержать своеобразные атомы пространства — планкионы или максимоны и времени — хрононы или хронокванты. Существуют ли они на самом деле? Пока мы еще очень далеки от исследования таких глубин материи, но принципиальная возможность существует и связана она с новыми поколениями ускорителей элементарных частиц. Однако и здесь потребуются новые экспериментальные методики, иначе для насыщения энергией подобных опытов не хватит всех планетарных ресурсов!

Глава 13. Теория теорий

Вселенная возникла в результате Большого взрыва в очень горячем, но довольно хаотическом состоянии. Высокие температуры означают, что частицы во Вселенной должны были очень быстро двигаться и иметь большие энергии. Как уже говорилось, при таких высоких температурах сильные и слабые ядерные силы и электромагнитная сила должны были все объединиться в одну. По мере расширения Вселенной она охлаждалась, и энергии частиц уменьшались. В конце концов должен был бы произойти так называемый фазовый переход, и симметрия сил была бы нарушена: сильное взаимодействие начало бы отличаться от слабого и электромагнитного. Известный пример фазового перехода — замерзание воды при охлаждении. Жидкое состояние воды симметрично, т. е. вода одинакова во всех точках и во всех направлениях. Образующиеся же кристаллы льда имеют определенные положения и выстраиваются в некотором направлении. В результате симметрия воды нарушается.

С. Хокинг. Рождение и гибель Вселенной


В последних эссе, посвященных будущему науки, Хокинг писал, что самым грандиозным успехом была бы долгожданная единая концепция всех частиц и сил — «Теория Всего». На пути к этому, конечно же, возникнут многочисленные новые модели пространства и времени (впрочем, их и сейчас более чем достаточно), которые помогут разрешить важные загадки квантовой гравитации и космологии. Это грандиозная цель, и вполне возможно, что для ее осуществления потребуется еще одна революция в наших представлениях о структуре физической реальности.

Первым шагом на пути к математической интеграции обеих теорий является теория квантового поля. Эта теория пытается описать поведение электронов, объединяя квантовую механику и частную теорию относительности Эйнштейна. Такое объединение идей оказалось довольно успешным, но в то же время английский физик, лауреат Нобелевской премии П. Дирак, автор теории квантового поля, признался: «Похоже, что поставить эту теорию на солидную математическую основу практически невозможно». Вторым и гораздо более сложным шагом должна быть интеграция общей теории относительности и квантовой механики, но пока никто не имеет ни малейшего представления о том, как это сделать. Даже такие признанные авторитеты, как Нобелевский лауреат С. Вайнберг, признают, что только для создания математического аппарата новой теории понадобится столетие или два.

Чтобы по-настоящему оценить всю шаткость надежд ученых когда-либо найти разгадку происхождения Вселенной, нужно знать, что они возлагают их главным образом на еще не созданную теорию единого поля, которая должна будет объединить в себе теорию относительности и квантовую механику. Они надеются, что эта теория опишет все силы, действующие во Вселенной, с помощью одного компактного математического выражения. При этом теория относительности необходима для описания общей структуры пространства-времени, а квантовая механика — для объяснения поведения субатомных частиц. К сожалению, обе теории явно противоречат друг другу.

Как-то раз физики-теоретики, в очередной раз перебирая умозрительные построения, натолкнулись на очень странный результат, полученный в начале 20-х годов прошлого века польским физиком Теодором Калуцей, преподававшим в то время в Кенигсбергском университете. Профессор Калуца подверг глубокому анализу ряд положений общей теории относительности, и в первую очередь рассмотрел вывод о том, что, являясь физической силой, тяготение, тем не менее, имеет чисто геометрическую природу, являясь искривленностью четырехмерного пространства-времени. Кроме гравитации в то время был известен только один тип силового поля, открытого в свое время Максвеллом, — электромагнитного, и Калуца предположил, что оно также имеет геометрическую природу.

Этот парадоксальный результат очень пригодился при создании теории единого суперполя, все компоненты которого, основываясь на идее Калуцы, можно было бы считать гравитацией в многомерном пространстве-времени. Правда, здесь опять возникает каверзный вопрос: почему мы никак не ощущаем наличие дополнительных пространственных измерений в окружающей физической реальности?

Ответ на данный вопрос пока удается получать только писателям-фантастам, многократно эксплуатирующим идею многомерных миров. Любопытно, что даже поверхностный художественный анализ подобной концепции сразу же приводит к некоторым вполне разумным выводам.

Можно, конечно, придумать Вселенную и из полностью независимых параллельных миров, каждый из которых, подобно гладкой шелковой ленте, повторяет все изгибы соседнего. Многие писатели-фантасты давно уже продуктивно эксплуатируют подобные идеи.

Тут Хокинг вспомнил свою давнюю работу, опубликованную в форме препринта. В ней он рассматривал попадание одного бита информации в черную дыру. При этом площадь ее поверхности возрастает на квадрат планковской длины (около 1,6 × 10–35 метра).

Поначалу факт увеличения черной дыры при падении в нее вещества или энергии показался теоретику не особо интересным. Однако в дальнейшем он обратил внимание на удивительное обстоятельство — в прямой пропорции с попавшей в черную дыру информацией увеличивается именно площадь ее поверхности, а не объем, что в корне отличается от любого другого из известных объектов во Вселенной. В случае большинства известных нам объектов справедливо утверждать, что при «поглощении» одного бита информации объем объекта вырастет на единицу, а площадь его поверхности — всего на долю. Но в случае с черными дырами ситуация обстоит иначе. Как будто эта информация попадает не внутрь компактного объекта, а остается на его поверхности.

Тут Хокинг вспомнил о принципе голографии. Голограмма — это изображение системы, полученное при помощи меньшего количества измерений, способное вместить в себя всю информацию из оригинальной системы. Например, мы живем в трех пространственных измерениях. И когда многочисленные посетители Кембриджа делают селфи со знаменитым физиком, камера смартфона создает двухмерный снимок, но при этом не запечатлевает всю информацию, и когда позже вы рассматриваете изображение, вы не можете, например, увидеть свой затылок, как бы вы ни крутили изображение.

Запись голограммы сохранила бы всю эту информацию. Даже будь она двухмерной, вы все равно смогли бы исследовать ее со всех углов в трех измерениях.

Хокинг предположил, что описание коллапсара как голограммы может решить так называемый информационный парадокс черных дыр. Он включает проблему исчезновения информации из нашего мира после пересечения веществом горизонта событий. Само упоминание здесь эргосферы гравитационных коллапсаров далеко не случайно. Собственно говоря, еще в самом начале поисков подходов к построению «Теории Всего» Хокинг в докладе на одной из конференций по теорфизике сформулировал необычный принцип: чем глубже мы погружаемся в глубины черной дыры, тем ближе оказываемся к единению всех частиц и сил….

С тех пор Хокинг с коллегами перепробовал несколько подходов к исследованию внутреннего пространства коллапсаров и, не достигнув решающих успехов, остановился на применении голографических принципов, таких как AdS/CFT-соответствие.

AdS означает «антидесситоровское пространство» и представляет собой частное решение уравнений теории гравитации Эйнштейна, описывающее абсолютно пустую вселенную с отрицательной кривизной пространства. Это, как однажды пошутил Хокинг, довольно скучная вселенная: в ней нет вещества или энергии, а параллельные линии в итоге расходятся из-за геометрии, лежащей в ее основе. Пусть оно и не описывает Вселенную, в которой мы живем, для начала это уже какая-то вселенная. И у этой модели есть необходимые математические свойства для осуществления связей, необходимых теоретикам.