Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность — страница 27 из 63

В этот момент он полностью осознал тот ужас, который они с коллегами создали в Лос-Аламосе. Для мира нет никакой надежды, решил Фейнман, – все напрасно.

Ричард знал, что он человек, а вовсе не элементарная частица вроде позитрона, не опережающая волна, поэтому он не может отправиться назад во времени и изменить историю. Но зато он в состоянии постичь кое-что на материале собственных ошибок. Фейнман ошибся, полагая, что цель «Манхэттена» – не дать нацистам разработать бомбу и оказаться ее единственными владельцами, и этим оправдывая свое участие в проекте. Осознавая, что у немцев в реальности не было никакой ядерной программы, и он, и другие могли сделать иной выбор.

Мир стал бы намного лучше без Дамоклова меча атомной войны, что висит над головой. Поэтому в будущем Ричард Фейнман будет всегда пересматривать свои предположения и корректировать планы в соответствии с меняющимися условиями.

Примерно в то же самое время он ощутил большое желание утешить Арлайн, показать, насколько сильно он все еще любит ее и скучает по ней, и Ричард решил написать ей письмо. Сказать в нем все, что хотел сказать при жизни, но не смог и не успел. Он помнил о ее желании не отягощать мужа своими проблемами, и поэтому объяснил ей, что она всегда помогала ему, даже когда болела.

Арлайн была воплощением его вдохновения, а без нее жизнь лишилась всего удовольствия.

«Ты была женщиной-идеей и главным зачинщиком наших диких развлечений»47, – написал Фейнман.

Он прекрасно понимал, насколько странно выглядит попытка написать умершему. Начать с того, как он сам указывал, что не очень понятно, как отправить письмо адресату. Однако он признавался, что Арлайн значит для него больше, чем кто-либо из живых людей.

«Я люблю свою жену. Моя жена мертва»48, – печально закончил он.

Письмо, никогда не отправленное, оказалось измятым и надорванным – верный признак того, что Фейнман перечитывал его раз за разом.

Святая простота

После возвращения в Принстон по окончании войны Уилер получил свободу и смог заняться тем, что он больше всего любил: преподаванием и фундаментальными исследованиями. Он, как и мечтал, обрел возможность смотреть из окна кабинета в лаборатории Палмера (Джона переселили туда из Файн-холла) на зеленые деревья и думать о глубочайших загадках мироздания.

С философской точки зрения он продолжал верить, что наш сложный мир может быть построен из простых компонентов, наподобие хитрой модели города, сложенной из базовых блоков «Лего». Совместные с Фейнманом исследования, по всей видимости, подтвердили его догадку о том, что все вырастает из электронов и их положительно заряженных двойников, позитронов.

Это может быть единственный электрон, зигзагом носящийся вперед-назад во времени, или многочисленные частицы.

Подобно дуэтам музыкантов, заполняющим воздух чарующей музыкой, электроны создают радуги, восходы солнца, удары молнии и громадное количество других видимых и невидимых проявлений, вступая для этого во взаимодействие друг с другом. Стандартная квантовая теория предполагала, что фотоны – не более чем посредники, иными словами, «частицы обмена», которые переносят силу, перемещаясь туда-сюда. Теория поглощения Уилера – Фейнмана смотрела на вещи иначе, с ее точки зрения электроны (и позитроны) могли генерировать свет посредством собственной подстройки.

Мир частиц таким образом становился проще.

Уилер полагал, что его страсть к минимализму произрастает из протестантского воспитания. Он был всю жизнь унитарианцем, представителем религиозного направления, которое извлекает унифицирующий принцип из разноплановых верований. Следуя этому принципу, он ревностно искал сущность вещей, заглядывал под поверхностные различия.

Как мебельщик, который в процессе работы использует пилу, молоток и гвозди, Уилер считал простоту достоинством. Материалы, с которыми он имел дело, могли меняться со временем, но отношение к основам мироздания оставалось всегда одинаковым.

Он описывал свою страсть следующим образом:

«И с течением времени все громче, вне сомнений, звучала литания, которую многие студенты были обучены повторять с бессмысленной верой, точно катехизис: есть четыре базовых силы, сильное взаимодействие, слабое, электромагнетизм и гравитация. Только мое протестантское происхождение вынудило меня отвергнуть этот катехизис. Какую более простую веру мог я поместить на освободившееся место? Идеалы простоты и единства, недосягаемые ныне и, возможно, лежащие во многих годах от настоящего. Возьмем одну силу, электромагнетизм, и попробуем узнать, где находятся ее пределы. Единственный этот шаг создал программу, достаточно четкую и амбициозную, чтобы я мог всецело посвятить себя ей»49.

Работая в рамках идеологии упрощения, Уилер был не прочь произвести все известные частицы и силы от электронов и позитронов. Он опубликовал статью, в которой использовал термин «полиэлектроны», чтобы описать сорт «атомов» или «молекул», созданных из пар электрон-позитрон. Неким образом он надеялся идентифицировать такие конструкты среди обитателей царства частиц.

Пара из одного электрона и одного позитрона дает на удивление нестабильную пародию на атом, именуемую «позитронием», два атома позитрония создают молекулу дипозитрония. Инновация Уилера состояла в том, что он представлял мир, построенный только из электронов и позитронов, сгруппированных в атомы и молекулы, неким образом более фундаментальный, чем стандартная смесь из протонов, нейтронов и электронов.

И пусть в конечном итоге стало ясно, что протоны и нейтроны не могут состоять из электронов и позитронов, он все же находился на верном пути.

Десятилетиями позже ученые поняли, что протоны и нейтроны сложены из кварков и антикварков, которые как точечные частицы могут быть кузенами электронов и позитронов. Так что семья фундаментальных частиц оказалась больше, чем некогда полагал Уилер.

Исследование по поводу полиэлектронов, пусть чисто умозрительное, вызвало одобрение. Нью-Йоркская академия наук, уважаемая группа ученых, наградила Уилера в 1947 году престижной премией Кресси Моррисона и по этому поводу напечатала статью в своем ежегоднике. Эта премия стала первой в числе многочисленных наград, которые наш герой получил за долгую карьеру.

К этому времени как раз возникло понимание того, что в природе существуют три – максимум четыре – фундаментальных силы. Теоретики пытались разобраться в их взаимодействиях, используя язык квантовой механики.

Уилер и Фейнман сосредоточились на электромагнетизме, который долго изучали с классической точки зрения, используя уравнения Максвелла, хотя он нуждался и в квантовом описании. Другим хорошо изученным взаимодействием была гравитация, признанным ее толкованием стала общая теория относительности Альберта Эйнштейна.

Несколько ученых попытались квантовать ее, но без особого успеха.

Теории электромагнетизма и гравитации объясняли невероятно широкий спектр феноменов – от работы моторов до вращения планет, но их нельзя было приложить к некоторым явлениям, имеющим место в атомном ядре. Взять хотя бы радиоактивный распад нейтронов на протоны, электроны и (о чем узнали позже) антинейтрино. Этому процессу, названному «бета-распадом», недоставало полного объяснения, несмотря на попытки Энрико Ферми и других описать его.

Целостное описание, в создании которого Фейнман сыграл одну из главных ролей, породило термин «слабое взаимодействие».

Другой важный процесс, требовавший удовлетворительного объяснения, крылся в силе, склеивавшей между собой нуклоны (протоны и нейтроны) в пределах атомного ядра. Мощное притяжение, действующее на очень коротких дистанциях, позже было названо «сильным взаимодействием».

В 1935 году Хидеки Юкава предложил его возможное обоснование, включавшее обменную частицу, названную «мезотрон», позже переименованную просто в «мезон». Мезоны, в отличие от фотонов, обладали массой, и как тяжелые шары для боулинга, которые высоко не подбросишь, их можно было передвинуть только на небольшое расстояние. Поэтому сильное взаимодействие ограничено субатомным уровнем.

По странному совпадению, в следующем году Карл Андерсон и Сет Неддермайер, занимавшиеся анализом космического излучения, обнаружили в нем частицу, грубо соответствующую по массе теории Юкавы. Ее назвали мю-мезон или короче «мюон».

Увы, вскоре стало ясно, что мю-мезон не полностью годится на место мезона. Фактически, если попытаться с его помощью связать вместе частицы в ядре, все закончится неудачей. Мюоны даже не подвергаются сильному взаимодействию, они, по всей видимости, не играют особой роли, они просто существуют в космических лучах и рождаются в различных процессах.

Имея в виду такую бесцельность их существования, физик Исидор Раби задал свой известный вопрос: «Кто это заказал?»

Настоящая частица из схемы Юкавы, названная пи-мезоном или «пионом», была найдена в 1947 году во время другого эксперимента по анализу космического излучения. Пионы – массивные частицы короткого радиуса действия, которые отвечают на сильное взаимодействие и полностью вписываются в теорию. Прошли десятилетия, прежде чем ученые сообразили, что и эти штуки не являются фундаментальными, что по-настоящему механизм сильного взаимодействия включает глюоны, другой тип обменных частиц.

Уилер надеялся, что его полиэлектроны помогут создать модели мезонов и других частиц из космических лучей. Конструируя мезоны из строительных блоков в виде пар электрон-позитрон, он мечтал объяснить изобилие экзотических частиц и сил только с помощью знакомого всем электромагнетизма и банального электрона.

Как таблица Менделеева показывает, что химические элементы состоят из ядра и электронов, возможно, расположенные в определенном порядке полиэлектроны, думал он, помогут представить в таком же виде элементарные частицы. После открытия пионов Уилер сказал «Нью-Йорк Таймс»: «Все более повышается вероятность того, что все более тяжелые частицы состоят неким образом, каким, пока неясно, из позитивных и негативных электронов»