Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность — страница 40 из 63

Брак Фейнмана остывал куда быстрее, чем те жидкости, с которыми он имел дело. Он и Мэри Луиза совершенно не подходили друг другу, его небрежный стиль ее не устраивал, она просила его носить пиджаки и галстуки вместо обычных рубашек. Коллеги находили супругу Ричарда неприятной, она требовала его внимания даже в те моменты, когда он глубоко погружался в размышления.

Игра на барабанах сводила Мэри Луизу с ума, а расчеты ввергали в замешательство, так что ничего удивительного, что уже через несколько лет она попросила о разводе.

На протяжении судебного слушания по этому делу в июле 1956-го она дала выход давно копившемуся раздражению: «Он начинал работать над математическими проблемами, едва проснувшись, – свидетельствовала она, – и я не могла говорить с ним, поскольку он заявлял, что я прерываю его работу»83.

Ну и само собой, барабаны производили «ужасный шум».

Суд приговорил Фейнмана к выплате разового возмещения, и это помимо регулярных алиментов. Газетный отчет о слушании сообщил, что ученому пришлось расстаться с частью имущества, но барабаны он сохранил.

На беговой дорожке Эйнштейна

Уилер прочитал первый годовой курс по теории относительности осенью 1952-го и весной 1953-го, в последнем семестре главным образом сосредоточился на общей теории относительности. Ударной точкой этого курса стал состоявшийся 16 мая визит в дом Эйнштейна на Мерсер-стрит, где гостям предложили чай и дискуссию по физике. После нее восемь магистрантов получили шанс задать создателю теории любой вопрос, что придет им в голову, и единственным ограничением стали границы вселенной.

Эйнштейн очаровал гостей размышлениями о расширении пространства и остроумной критикой квантовой механики. Он даже ответил на несколько мрачный вопрос о том, что случится с домом после его смерти. «Этот дом никогда не станет местом паломничества, куда люди приходят, чтобы посмотреть на кости святого»84, – заявил он.

И когда они уже собрались уходить, Уилер спросил Эйнштейна, есть ли у того совет для молодых физиков.


Альберт Эйнштейн, Хидеки Юкава и Джон Уилер, гуляющие в Маркванд-парк, Принстон, 1954 год.

Источник: фотография Уоллеса Литвина и Джозефа Крингольда, AIP Emilio Segre Visual Archives, Wheeler Collection.


«Кто я такой, чтобы советовать?» – отозвался австриец.

Готовясь к курсу, Уилер досконально разобрался во всех аспектах общей теории относительности. Он нашел и позже использовал в своем классическом учебнике сжатый способ описания: «Пространство влияет на материю, диктуя ей, как двигаться. И наоборот, материя воздействует на пространство, говоря ему, как изгибаться»85.

С точки зрения общей теории относительности Земля движется по эллиптическому пути вокруг Солнца не из-за воздействия некой силы на расстоянии, а из-за того, что существует локальное искажение пространства, произведенное массой Солнца. Если наше светило вдруг исчезнет, пространство вокруг очень быстро разгладится, поскольку гравитационные волны путешествуют со скоростью света. И едва регион, бывший солнечной системой, станет плоским, как блин, наша планета двинется по прямой линии.

Вам даже не нужно массы, чтобы создавать изгибы или вмятины в пространстве, энергетические поля отлично справляются с этой задачей, поскольку в теории Эйнштейна масса и энергия полностью эквивалентны. Даже гравитационная энергия, обусловленная пространственными волнами, может порождать искривление. Следовательно, можно представить петлю обратной связи, в которой волны формируют другие волны.

Иными словами, геометрия порождает сама себя, безо всякой нужды в материи.

Общая теория относительности скоро стала для Уилера базовой темой, ему нравилось выводить остальные явления в физике из искривленного пространства и энергетических полей. Он отставил концепцию «все есть частицы» и стал адептом подхода «все есть поля», и это был полный переворот.

Когда-то Джон думал, что поля не более чем иллюзия, теперь он начал относиться так к материальным объектам. Однажды он поверил в действие на расстоянии, теперь убедился, что все происходит в масштабах определенной области.

Он вступил в новый мир, и этот мир обещал приключения и открытия.

Диета из червей

Статья, написанная в 1935 году Эйнштейном и его ассистентом в институте перспективных исследований Натаном Розеном, была посвящена интригующему аспекту релятивистской геометрии, когда два пространственно-временных континуума соединены узким туннелем, получившим название «мост Эйнштейна – Розена». Сконструированная ими фигура напоминала песочные часы, где верхняя часть представляла один континуум, нижняя – другой, а горлышко изображало мост. Эйнштейн и Розен попытались использовать такую геометрическую конструкцию как некий эрзац для элементарных частиц, таких как электроны.

Уилер взял ту же самую конструкцию и окрестил ее «червоточиной»[14]. Он представил поверхность яблока, символизирующую обычное пространство, и червя (энергия, порождающая экстремальное искажение), прогрызающего в яблоке короткие пути. Появившиеся в результате дыры изменили топологию (математическое описание свойств) пространства. Как только они появились, другие энергетические поля получили возможность проходить через них, перемещаться из одной точки в другую как по волшебству.

И едва Уилер начал разбираться с тем, какие эффекты могут иметь червоточины, его посетило ошеломляющее озарение. Представим совокупность линий электромагнитного поля, которые проваливаются в червоточину – им придется сойтись в некоей точке, имитируя отрицательный заряд вроде того, что есть у электрона. Затем «проглоченные» линии после путешествия через червоточину появляются на другой стороне, выходят из иной точки. Выглядит это так, как будто у них имеется положительный заряд, такой, как у позитрона. Следовательно, червоточина кажется созданной парой противоположно заряженных частиц. Заряд появляется из ничего, эффект, названный «заряд без заряда».

Уилер изучал и другую структуру: замкнутый пучок энергии, именуемый «геон». Он хотел знать, что произойдет, если электромагнитное поле получит очертания такого рода – сферы, бублика или иную конфигурацию, – что его собственная гравитация будет удерживать его цельным неопределенно долго. Такая гравитационная структура по всем внешним проявлениям станет вести себя как частица. А подчиняясь утверждению Эйнштейна о том, что энергия и масса свободно обратимы, она даже будет обладать массой. Уилер назвал этот феномен «масса без массы».

Он начал мечтать о новой разновидности физики, построенной на червоточинах, геонах и других геометрических конструктах в компании всяких энергетических полей. Старушка-материя оказалась бы просто иллюзией в новой науке «геометродинамике». Но для проверки того, будет ли работать такая радикально новая модель, требовалось проделать немало расчетов.

Общая теория относительности славится тем, что в ней трудно находить точные решения, за исключением нескольких простых случаев. Но работа в проекте «Маттерхорн» показала Уилеру, что современные компьютеры на многое способны, и что ему просто нужны одаренные ученики – такие как Джон Толл и Кеннет Форд, помогавшие в работе над водородной бомбой, – чтобы отработать технику и запустить в дело геометродинамическую программу.

Выглядело это многообещающе, и Уилер ощущал приятное оживление.

Чарли и геометрическая фабрика

Блестящие теоретики приходят в науку не так часто.

Когда Уилер встретил Чарльза Мизнера, он обрадовался, что в руки ему попал молодой, математически подкованный аспирант, столь же влюбленный в общую теорию относительности, как и он сам. Мизнер работал с полями, получая образование в университете Нотр-Дам, и там же он овладел огромным арсеналом разнообразных математических дисциплин, включая топологию.

Он поступил в аспирантуру Принстона осенью 1952 года.

Подобно Фейнману, он первое время жил в Градуэйт-колледже и хорошо знал дорогу в комплекс лаборатории Палмера. Первый год он посещал занятия и участвовал в проекте по радиоактивному распаду под руководством Артура Уайтмана, несколько раз сталкивался с Уилером и всегда пользовался возможностью, чтобы поговорить о теории относительности.

Позже, когда Уилер начал заниматься червоточинами, геонами и другими чудесами геометродинамики, Мизнер стал участником этого предприятия. Полученного ранее научного багажа Чарльза хватило, чтобы полностью понять то, что так вдохновляло Уилера. Вскоре они обнаружили, что штурмуют высоты знания вместе, и Джон выполняет обязанности научного руководителя.

В дискуссиях с Мизнером Уилер разработал модель квантовой гравитации, названную им «квантовой пеной» (известна как «пространственно-временная пена»). Представим некую разновидность супермощного микроскопа, увеличивающего ткань природы и позволяющего видеть, что происходит в мельчайшем масштабе, именуемом «планковской длиной», это 6×10–34 дюймов (1,6×10–35 метров). Триллионы триллионов объектов такого размера, уложенных рядом, не покроют и одного атома.

Само собой, что на таких малых расстояниях все работает по квантовым правилам. Пространство выглядит «пенистым», оно изгибается в пульсе случайных квантовых флуктуаций, червоточины и другие связанные структуры спонтанно возникают и так же быстро исчезают, словно пузыри в слое пены.

Чтобы понять, как классическая реальность является из такой хаотической пены, требовался процесс оптимизации, который выделил бы упорядоченный космос, доступный нашим глазам. Уилер очень хотел знать, не поможет ли справиться с этой задачей интеграл по траекториям. Наверняка методы Фейнмана позволят найти оптимальную траекторию среди всех возможных вариантов эволюции вселенной.

Результатом стала бы изящная связь между классической и квантовой теориями гравитации, способная объяснить, как порядок возникает из случайных квантовых флуктуаций.