Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность — страница 56 из 63

Прорыв в области обратимых вычислений, подчеркнул он, был ключом к такой симуляции, поскольку классическая физика обратима во времени.

Для недетерминистических систем вероятность может быть встроена в механизм, подобно тому, как она программируется на игровых автоматах в казино. Но для того чтобы создать реалистическую модель квантовых систем, недостаточно будет стандартных механизмов и обычных компьютеров. Воспроизведение странности квантовой механики потребует квантовых компьютеров, базирующихся на суперпозициях состояний.

Он предложил использование либо электронов с суперпозицией верхнего и нижнего спинов, либо фотонов с комбинацией поляризации по и против часовой стрелки в качестве бинарных элементов. Такие квантовые генерализации битов стали широко известны как «квантовые биты» или «кубиты». Термин часто приписывают Бенджамину Шумахеру, одному из учеников Уилера.

Квантовые биты могут быть собраны в решетки, во многом подобные квантовым автоматам, с каждой клеткой, взаимодействующей с ближайшими соседями в соответствии с правилами квантовой динамики. Такие устройства привели бы интеграл по траекториям в кибернетическую реальность, позволили бы переносить более широкий спектр информации до тех пор, пока измерение не сведет суперпозицию квантовых состояний в один из ее компонентов и будет получен окончательный результат. Вместо одной линейной траектории, ведущей к ответу, тут были бы испытаны все возможные пути, причем в один момент, что позволило бы сэкономить время. Это подобно лабиринту, где кусок сыра ищет множество крыс, и велики шансы, что они доберутся до цели очень быстро.

Удивительно, но сорок лет спустя после разработки интеграла по траекториям Фейнман смог найти новое применение для своего детища.

Он продолжал интересоваться, чем занимается в Массачусетсе его сын. В лаборатории искусственного интеллекта Минского Карл был вовлечен в разработку схем параллельных вычислений: набор процессоров, работающих в тандеме, чтобы быстрее и эффективнее выполнять вычисления.

В 1983 году Даниэль Хиллис, магистрант, трудившийся вместе с Фейнманом-младшим, решил основать компанию «Синкинг Машинс Корпорейшен», чтобы разрабатывать и производить компьютеры нового поколения, названные «машинами логических соединений», с миллионами параллельных процессоров в каждой. Карл привез Хиллиса в гости, чтобы познакомить с отцом, и хотя тот поначалу встретил идею скептически, потом он отнесся к ней лучше.

Хиллис был поражен Фейнманом-старшим (он в то время мог путешествовать), когда тот вызвался некоторое время поработать в зоне для стартапов в Бостоне. Бизнес отправился в «плавание», Карл занял в компании важное место, и через несколько лет Ричард с энтузиазмом докладывал: «Год назад я говорил тебе, что польза от большого числа запараллеленных компьютеров ограничена. Сейчас все сложнее и сложнее найти что-то такое, что они не в состоянии делать»137.

Кубиты и суперструны

Все еще занимаясь теорией информации черной дыры, Уилер продолжал проповедовать веру «все из бита» любому, кто готов был слушать. Хотя он и Фейнман сосредоточились на одном и том же, на бинарных вычислениях, подход у них был разный. Джон был мечтателем, а Ричард – практиком, первый смотрел на звезды, на будущее и прошлое, а второй думал, как заставить работать вещи на Земле здесь и сейчас.

В 1985 году многие физики-теоретики были воодушевлены перспективой обобщения теорий гравитации и остальных взаимодействий, которую представила «теория суперструн». Ее разработали Майкл Грин из университета Лондона и Джон Шварц из Калтеха, опиравшиеся на идеи многих других исследователей.

Эта концепция содержала несколько необычных элементов.

Во-первых, она замещала точечные частицы, такие как кварки и электроны, вибрирующими нитями энергии планковской длины. Поскольку они обладали конечными размерами, то бесконечные величины в полевой теории становились конечными, тем самым отпадала необходимость в перенормировке. Концепция опиралась на новую симметрию между фермионами, компонентами материи, и бозонами, переносчиками взаимодействий, при которой одни могли трансформироваться в другие. Возможно, более удивительным выглядело то, что она имела математический смысл только при наличии десяти и более измерений. Поскольку в доступном нам пространстве-времени их четыре, остальные шесть должны быть свернуты крайне плотно в масштабах той же планковской длины и нам недоступны.

Множество выдающихся теоретиков, недовольных отсутствием прогресса в квантовании гравитации с помощью стандартных методов (обобщение квантовой электродинамики) обратились к теории струн, сочли ее перспективной. Но и Уилер, и Фейнман остались скептиками, хотя и по разным причинам: первому она казалась слишком маломасштабной, второму не хватало доказательств.

«Мы должны смотреть на вещи шире, – говорил Уилер. – Как возникает бытие? Откуда берется квант? Я помню одного коллегу, взявшегося прочесть лекцию по теории струн, так он описал мне все, словно пресвитерианский священник, читающий Библию»138.

«Я заметил, что когда я был моложе, многие старики в нашей области не могли хорошо понять новые идеи… как Эйнштейн оказался не в состоянии постичь квантовую механику, – говорил Фейнман. – Я сам теперь старик, и вот они, новые идеи, и они выглядят для меня безумием, выглядят так, словно уводят нас не в ту сторону»139.

Опубликованная в том же году статья, написанная Дэвидом Дойчем, «Квантовая теория, принцип Черча – Тьюринга и универсальный квантовый компьютер»140, предложила идеи, куда более близкие Уилеру и Фейнману. Дэвид Дойч показал, как обобщить детерминистические машины Тьюринга в универсальные квантовые компьютеры, базирующиеся на кубитах. Он продемонстрировал, как квантовое параллельное вычисление может быть быстрее стандартных линейных алгоритмов. И в конце концов, он доказывал, что многомировая интерпретация квантовой механики Хью Эверетта является наиболее логичным путем описания того, как функционирует подобное устройство.

Дойч был не одинок в защите теории Эверетта. Немецкий физик Дитер Цее использовал ее положения в версии, именуемой «многоразумовой интерпретацией» (1970 г.). Цее предположил, что наблюдатель сам по себе не расщепляется в процессе наблюдения, а остается в суперпозиции состояний вместе с тем, что измеряется. Вместо коллапса его волновая функция становится запутанной (связанной с тем же квантовым состоянием) с подвергающейся изучению квантовой системой. Почему тогда он воспринимает определенное значение, а не набор возможностей? Потому что, согласно Цее, его ментальное состояние раздваивается, и каждая из альтернатив выносит свое заключение. Поскольку тело может похвастаться только одним умом, его направляющим, то другие выборы существуют, но признаются нерабочими.

Цее помог развить другую идею, связанную с его многоразумовой интерпретацией, именуемую «декогерентностью». Войцех Журек, студент Уилера в университете Техаса, стал вторым автором концепции.

Декогерентность утверждает, что для каждого квантового измерения система становится запутанной с ее окружающей средой. Из-за этого запутывания на краткий период ее суперпозиция разлагается в определенное состояние, подобно тому, как дерево, качаемое сильным ветром, в конечном итоге опрокидывается. Только крохотные системы, изолированные от окружения, могут долгое время оставаться в суперпозиции, а большие, подверженные влиянию среды, постоянны и однозначны. Таким образом, они остаются в конкретных состояниях, а не в суперпозициях, и поэтому именуются «классическими».

Видящее «я» и контур самовозбуждения

Взаимодействие Уилера с его творчески настроенными студентами все более увлекало его в направлении «все есть информация». Он по большому счету отложил в сторону свой интерес к общей теории относительности, чтобы заняться проблемами квантовой информации. Его применение модели отложенного выбора к вселенной целиком все сильнее тянуло его к философским вопросам, а ведь подобное некогда происходило и с Нильсом Бором. «Философия слишком важна, чтобы оставить ее на откуп философам»141, – как-то сказал Уилер. Свою новую философию он называл «коллективным антропным принципом». Подобно дополнительности Бора, эта схема подчеркивала роль наблюдателя, но при наличии отложенного выбора этот наблюдатель имел силу изменять прошлое точно так же, как и будущее. Вспомним астронома, добавляющего полупрозрачное зеркало к телескопу, чтобы воспринять фотоны от древнего квазара как волну, а не как частицу.

С ранних работ в области геометродинамики и квантовой пены Уилер верил, что воздействие на волновые функции структур в прошлом может определять судьбу всей вселенной. Следовательно, человеческое наблюдение, возможно, и придало ранней вселенной такую форму, что она эволюционировала в сторону появления жизни. Отсюда вывод, что наш вид сегодня, с его далеко простирающимися возможностями наблюдения, уходящими далеко в прошлое, в некотором смысле создал условия для собственного существования. Заимствуя аналогию из электроники, Джон назвал идею «контуром самовозбуждения» и изобразил ее как U-образный объект с глазом на одной из веточек, который смотрит на другую, находящуюся в прошлом.

«Вселенная не существует “где-то там”, независимо от нас, – однажды написал он. – Мы неотвратимо вовлечены в процесс определения того, что должно происходить. Мы не только наблюдатели. Мы участники. В некотором странном смысле это наша коллективная вселенная»142.

Уилер часто обсуждал «Двадцать вопросов: версия с сюрпризом», игру, проливающую свет на концепт наблюдателя, создающего нечто новое. В ней группа приятелей приходит к тайному соглашению, что они собираются играть в классические «Двадцать вопросов» с неким поворотом: в начале никто не держит в голове конкретное слово. Тот, кто задает вопросы (его нет в комнате, когда игроки составляют заговор), не знает о подобном обороте дела. Он задает вопросы и, по мере того, как звучат ответы, каждый слушает слова других и заботится о том, чтобы его собственные сочетались с высказываниями других. Обычно при этом вариантов быстро становится все меньше.