Квинтэссенция. Книга первая — страница 5 из 8

ПЕРВЫЕ ШАГИ

1473 год. В мир пришел Коперник. Много событий произошло прежде, чем люди узнали, что он — великий сын человечества. Он по-новому, на основе математики, возродил идею Аристарха Самосского о том, что Солнце и звезды покоятся, а Земля и другие планеты вращаются вокруг Солнца (причем Земля вращается и вокруг своей оси). Пусть это было ошибкой, зато теперь эфир стал ненужным. Он исчез из астрономии вместе с хрустальными сферами Аристотеля и Птолемея. Прежде чем выбросить эфир в мусорную корзину истории науки, Коперник придирчиво листал книгу времен, и надо было быть очень мужественным человеком, чтобы решиться вычеркнуть из нее такого долгожителя как эфир.

Эфир затаился в словарном запасе большинства языков. Поэты, забыв о том, что он был пятой сущностью, придали ему новый, поэтический смысл. И теперь мы, включив радиоприемник, не обращаем внимание на слова диктора — «В эфире наша программа…»

Эти слова — результат нескольких витков эволюции эфира. В них отражена не поэзия, а проза. Проза науки.

Вспомним — на начальном витке пятая сущность — эфир, — породнилась с первой сущностью — с огнем. Первая сущность претерпела удивительную и блестящую эволюцию. Это не должно казаться странным. Ведь по Аристотелю незримая и неощутимая пятая сущность обитала только высоко в небе. Она была чужой земным делам.

Напротив, огонь с глубокой древности дарил людям свет и тепло, защищал от холода и хищников, облагораживал пищу. В сознании первобытных людей огонь был наделен высшей силой. Иногда он уничтожал леса и жилища. Многие народы древнего мира, включая египтян и эллинов, поклонялись ему как божеству.

По мере того, как разрозненные племена объединялись в централизованные государства, а родовой строй уступал место сословным государствам, боги очага были вытеснены культом Солнца, ставшего символом света и тепла, источником жизни.

Наблюдения Солнца, планет и звезд, выяснение закономерностей их движения, бывшие привилегией жрецов, породили одну из древнейших наук — астрономию.

Наука о свете возникла значительно позже. Невозможно определить когда и кто впервые начал изучать оптические явления. В учении о теплоте тоже долго продолжались гадания. Но мы знаем, кто положил начало науке о теплоте. Великий Галилей начал это опытами с термоскопом, а в своих лекциях в 1597 году он показывал прибор для измерения того, что мы теперь называем температурой.

Нет ничего удивительного в том, что наука о теплоте отстала от науки о свете. Ведь представление о тепле и холоде весьма индивидуально. То, что одному кажется теплым, для другого горячо и даже очень горячо. Одному тепло, а другому холодно.

Другое дело — свет. За исключением немногих слепых, лишенных счастья видеть свет, остальным людям днем светло, а ночью темно. Радуга видна всем. Иногда в морозные зимы рядом с Солнцем видны его двойники, чаще видны гало — светлые круги, охватывающие Солнце или Луну. Свет и его отсутствие — темнота выступают, как безусловная реальность.

Живя в тесном общении с природой, люди заметили, что радуга обычно появляется после окончания дождя. Не зная причин ее появления, они попросту считали радугу знамением, предвещающим хорошую погоду.

Вопрос о связи причин и следствий несомненно возникал в глубочайшей древности. Ошибка в ответе на него во многих случаях сказывалась на благополучии и на самой жизни. На низшем уровне, иногда в форме условных рефлексов, формирующихся в результате личного опыта, связь причин и следствий играет большую роль в мире животных.

Несомненно, что многие из людей обнаруживали в золе костров твердые шарики, пропускавшие свет. Некоторые делали из них бусы. Кое-кто шлифовал эти шарики и они становились прозрачными как капли воды. Такие шарики, конечно, очень нравились доисторическим модницам. А мода, это дитя подражания, придавала особую ценность прозрачным твердым капелькам, порожденным огнем.

Наконец неведомый гений заметил, что такие шарики возникают не всегда. Они появляются, если большой костер горит на песчаной почве и песок постепенно смешивается с золой. Он ли, или кто-либо другой догадались, что большие куски прозрачного вещества можно получить, тщательно перемешав песок и золу и сильно нагревая эту смесь в глиняных сосудах.

Так люди научились варить стекло, причем в разных странах это было сделано независимо.

Другие наблюдательные люди заметили, что стеклянные бусы способны концентрировать солнечный свет в яркие пятнышки и в этих пятнышках собирается не только свет, но и тепло.

Выдающийся автор комедий, афинский поэт Аристофан в своих «Облаках», написанных около четырех веков до нашей эры, упоминал о зажигательных стеклах. Это первое письменное сообщение о применении солнечного света. Из комедий Аристофана мы можем заключить, что об этом было известно много раньше.

Аристотель был первым, кто систематически наблюдал явления природы и пытался их объяснить. Он заметил, что прямая палка, опущенная в воду наклонно, кажется надломленной у поверхности воды. Погружая палку то больше, то меньше можно перемещать этот излом вдоль палки. Но, если вынуть палку из воды, она окажется совершенно прямой, без следов излома. Аристотель пытался понять почему так происходит, но не нашел ответа.

Эллинам не удалось достичь понимания природы света. Это же относится к объяснению механизма зрения. Пифагорейцы считали, что глаза испускают особый флюид, «ощупывая» таким образом предметы. Эмпидокл учил, что от светящихся тел к глазу направляются особые истечения, а из глаза навстречу им выделяются другие истечения. При их встрече возникают изображения предметов. Убежденный атомист, Демокрит отвергал флюиды и истечения, указывая, что испуская их, глаза должны видеть в темноте. Он считал, что глаз видит потому, что в него проникают мелкие атомы, исходящие от светящегося предмета. Но он не объяснил почему эти атомы не выделяются в темноте.

Платон утверждал, что от предметов исходит особый флюид. Но предметы становятся видимыми только в том случае, если этот флюид встречается с другим, исходящим из глаз. Аристотель не высказал новых гипотез. Он соглашался с возражениями Демокрита против флюидов и истечений и не придерживался ни одного из объяснений своих предшественников.

Зеркала младше первых линз, родившихся из золы костров. Археологические раскопки показывают, что люди начали изготавливать зеркала вскоре после того, как научились выплавлять бронзу и делать из нее различные предметы.

Странно, что зеркала не упоминаются в дошедших до нас трудах Аристотеля. Он не мог не видеть отражения предметов от поверхности воды. Ему несомненно были известны и свойства металлических зеркал. Но он не обсуждал их, вероятно потому, что при этом нужно было сказать о природе света, о механизме его отражения и о процессе зрения, а он не имел об этом определенного суждения.

Наиболее ранний трактат, посвященный свойствам света, принадлежит Евклиду. Как при построения здания геометрии, Евклид объясняет оптические явления, исходя из ряда постулатов, которые он формулировал на основе наблюдений. Первый из них: «Испускаемые глазами лучи распространяются по прямому пути». Здесь Евклид уточняет гипотезу пифагорейцев, поддержанную Платоном.

Опираясь на постулаты, считая, что лучи света распространяются по прямым линиям, Евклид с удивительной последовательностью объясняет в своей «Оптике» образование изображений, получающихся при помощи малых отверстий. Он обсуждает возникновение границ света и тени, зависимость между кажущимися размерами предметов и их расстоянием от глаз.

В следующем труде «Катоптрика» Евклид вновь строит систему постулатов и получает законы отражения света от плоских и сферических зеркал. В обеих книгах Евклид по существу сводит оптику к геометрии. Полученные им результаты достоверны. Они и сейчас составляют основу того, что мы называем геометрической оптикой и изучаем не только в школе, но и в высших учебных заведениях.

В «Катоптрике» Евклид пишет: «При помощи вогнутых зеркал, освещенных Солнцем, можно зажечь костер». В доказательство он строит схему лучей, исходящих от Солнца, и после отражения собирающихся в точку. Возможно, мы никогда не узнаем видел ли Евклид вогнутые зеркала или пришел к мысли о них благодаря своей интуиции геометра и установленному им закону отражения света от плоских зеркал.

В «Катоптрике» содержится важный постулат, несомненно почерпнутый из опыта: «Если какой-либо предмет поместить на дно сосуда и удалить сосуд от глаз настолько, что предмет не будет виден, то он вновь станет виден на этом расстоянии, если в сосуд налить воду».

Этот опыт и сейчас показывают на уроках физики и каждый может повторить его дома.

Евклид, как и Аристотель (в опыте с палкой, погруженной в воду), не дает объяснения наблюдаемому эффекту. Читатель, известно ли тебе, что здесь происходит?

ОЧКИ. ГРИМАСЫ ПРИОРИТЕТА

Клеомед в начале новой эры снова обсуждал опыт с предметом, который лежит на дне сосуда и становится видимым после того, как сосуд наполнен водой. Исходя из этого он заключает, что мы видим Солнце и после того, как оно ушло за горизонт.

Знаменитый астроном древности Птолемей посвятил отдельное сочинение свету и оптике. Эта книга была известна вплоть до средневековья, но потом следы ее затерялись. Лишь в 1800 году француз Лаплас обнаружил ее в парижской библиотеке в виде латинского перевода с арабского. Это один из многих примеров того, что арабские ученые сберегли для нас труды древнегреческих ученых, уничтоженные в Европе религиозными фанатиками.

В «Оптике» Птолемей воспроизводит теорию Евклида о зеркалах и опытах с преломлением света. Птолемей описывает опыты по измерению угла, под которым распространяется луч света, попадающий в воду из воздуха. Он знает, что угол преломления зависит от угла падения, но не может найти связи между ними.

Птолемей подтверждает мнение Клеомеда об искривлении лучей света в воздухе и устанавливает, что это искривление увеличивается по мере приближения звезды к горизонту. Однако связь между падающим и преломленным лучами ускользала от него так же, как и закон искривления (рефракции) лучей в атмосфере.

Для решения этой задачи человечеству понадобилось около шестнадцати веков.

В течении этого долгого периода общего упадка науки и разгула клерикального мракобесия, оптические явления время от времени привлекали внимание ученых-одиночек.

Так, Антемий (около 500 г. нашей эры), строитель прекрасного византийского собора в Константинополе, знал, что вогнутые зеркала собирают лучи Солнца в одну точку. На этом основании он отвергал рассказы о том, что Архимед зажигал корабли римлян при помощи сферических зеркал, ибо это возможно только если корабль окажется на вполне определенном расстоянии — в фокусе этих зеркал. Он пробовал повторить опыт Архимеда при помощи многих плоских зеркал. Солдаты Архимеда, считал он, могли таким способом согласовано направлять при помощи блестящих плоских щитов солнечные зайчики в одно место вражеского корабля.

Первым, кто на рубеже нашей эры сумел продвинуться в оптике дальше, чем греки, был арабский ученый Альгазен, но и он не смог найти закона преломления света.

Прошло еще около 250 лет пока Р. Бэкон сумел сделать еще один шаг в понимании действия вогнутых зеркал. В его время наряду с металлическими зеркалами применяли и стеклянные зеркала, покрытые изнутри свинцом. Бэкон установил, что сферическое зеркало не сводит лучи Солнца в одну точку. Он понял и преимущество параболического зеркала, а также принцип действия линз, увеличивающих изображения предметов.

Тринадцатый век отмечен изобретением очков. До этого линзы применяли от случая к случаю. Их располагали близко к рассматриваемому предмету. Они служили как лупы. Изобретатель очков остался неизвестным. Правда, памятник на могиле С. Армати, умершего во Флоренции в 1317 году, увековечил его как изобретателя очков. Хроника, находящаяся в библиотеке одного из монастырей в Пизе, сообщает, что изобретатель очков пожелал скрыть свою тайну, но монах А. де Спина, узнав о действии очков, научился их изготавливать и показывал другим, как это надо делать. Однако словарь академии Делла Круска утверждает, что очки были известны уже в 1285 году.

Столь же неясен приоритет изобретения микроскопа.

Изобретателем микроскопа обычно называют голландца Левенгука, хотя известно, что он пользовался одиночной линзой, то есть, лупой, или простым микроскопом, доведя до высокого уровня технику наблюдения. Его лупы давали увеличение до 160 раз. В то время и в последующие двести лет никто не мог воспроизвести главные результаты, полученные Левенгуком. Только он умел подробно наблюдать строение прозрачных объектов, не прибегая к их окрашиванию. Левенгук регулярно сообщал о своих наблюдениях в Лондонское Королевское общество, сопровождая их рисунками, но не объяснял, как он ставил свои опыты.

Лишь в 1867 году немецкий ученый А. Теплер разработал метод, позволяющий наблюдать строение неокрашенных прозрачных предметов. Для этого он, системой из двух линз, оптические оси которых совпадают, фокусировал в точку свет точечного источника и отсекал этот свет краем ножевой диафрагмы, помещенной в фокусе. При этом свет не попадал в глаз или объектив, направленный вдоль этой оптической оси. Если между линзами поместить неокрашенный предмет, обладающий оптическими неоднородностями, то свет, отклоненный этими неоднородностями, минует диафрагму и неоднородности станут видимыми.

Только в середине XX века тало ясно, что Левенгук предвосхитил метод Теплера, располагая наблюдаемые объекты, линзу и источник света так, что часть лучей, проходящих через объект, отсекалась оправой линзы и не попадала в глаза наблюдателю.

Известно, что Левенгук был необразованным человеком и занимался наблюдениями для собственного удовольствия. Но затем он увлекся ими и стал общепризнанным основателем микробиологии.

Теперь мы уверены в том, что Левенгук просто не понимал, в чем состоял его «секрет». Мы знаем и о том, что отдельные микроскопические наблюдения производили и предшественники Левенгука, оставшиеся неизвестными. Так, еще за 50 лет до него, некто Стеллути описал проведенные при помощи линзы наблюдения строения тела пчелы. Сам термин «микроскоп» примерно в это время придумал член итальянской академии «Де Линчеи» — Демискиан.

На изобретение микроскопа и телескопа, содержащих две линзы, претендовал голландский оптик Янсен, утверждавший, что он вместе с отцом изготовил микроскоп в 1590 году, а телескоп в 1608-ом. Но создатель волновой теории света Гюйгенс считал, что микроскоп изобретен не ранее 1618 года. А прибор, изготовленный Янсеном, был продемонстрирован в Англии в 1621 году. Наряду с этим известно, что Галилей еще в 1612 году изготовил микроскоп, содержавший две линзы, и послал его в дар польскому королю.

Он же, узнав в 1609 году о зрительной трубе, созданной в Голландии для наблюдения удаленных предметов, самостоятельно изготовил такую трубу и 7 января 1610 года потряс мир сообщением об открытых им лунах Юпитера.

Здесь упомянуты эти приоритетные споры не потому, что они имеют существенное значение, просто они показывают сколь широко распространился к началу семнадцатого века интерес к учению о свете и созданию оптических приборов. Как говорится «с миру по нитке» — постепенно накапливались знания о важнейшей субстанции, составляющей Вселенную — о свете.

Впрочем, следует обратить внимание и на причину, породившую споры о том, кто первым сделал тот или иной прибор. Древних и средневековых авторов тоже волновали проблемы приоритета. Ведь каждый новый результат, каждый крупный шаг в науке создавал и укреплял престиж ученого, обеспечивал ему авторитет среди служителей науки и славу в глазах просвещенных людей.

И в древности и в средние века некоторые из ученых сообщали о своих результатах в зашифрованном виде, сопровождая сообщения наводящими вопросами. Лишь позже они объявляли о своих результатах, давая расшифровку первоначального сообщения. Так, например, Архимед не сразу объявлял о своих открытиях в области геометрии. Известно, что он направлял Эратосфену трудные задачи, сопровождая их зашифрованными решениями с тем, чтобы потом доказать, что решение этих задач им уже найдено.

Не пренебрегал этим и Леонардо да Винчи, универсальный гений эпохи Возрождения. Ряд своих трудов он писал так, что их можно было прочитать только пи помощи зеркала. Он применял и другие способы шифровки, чтобы его открытия не были похищены конкурентами.

И в древности и в наши дни ученые и люди, далекие от науки, иногда пользовались совсем не научными методами для доказательства своей правоты. Платон скупал и уничтожал труды Демокрита. Так поступали не только одиночки. Католическая церковь уничтожала книги, казавшиеся ей опасными. Индекс запрещенных книг содержал многие сотни названий. В некоторых штатах США до недавнего времени было запрещено преподавание дарвинизма. В этой же стране вплоть до наших дней сохранилась практика изъятия из библиотек книг, не угодных «отцам города» или законодателям штата. Германские фашисты сжигали книги, в том числе научные книги прогрессивных авторов. Конечно, все эти и многие другие факты запрещения книг, в том числе и в нашей стране, относятся к сфере идеологической борьбы, а не к существу науки.

Проблема приоритета вновь возникает и развивается в связи с тем, что начиная с семнадцатого века наука все более интенсивно влияет на технику, а технические новинки — изобретения — начали приносить непосредственный доход их авторам. Поэтому возникает и приобретает юридическую силу система привилегий, дающих изобретателям право исключительного применения их идей и конструкций. Эта система, дожившая до наших дней в форме международного патентного права, защищает интерес изобретателей и тем самым стимулирует технический прогресс.

Споры о приоритете на рубеже 17 и 18 веков иногда достигали большого ожесточения также в связи с чисто престижными соображениями. Наиболее известными из них являются претензии Гука к Ньютону, приведшие к тому, что их первоначально дружеские отношения оказались испорченными. После очередного столкновения, Ньютон принял решение не печатать ничего, относящегося к оптике, до смерти Гука. И действительно, только через два года после смерти Гука, Ньютон, по настоянию друзей, собрал и опубликовал свои исследования в области оптики. Трудные, кропотливые и новаторские работы многих лет.

Начиная исследования света Ньютон думал, что свет является результатом волнового движения некоторой среды. Но он отказался от этой точки зрения. Ему не удалось объяснить на этой основе факт прямолинейности лучей света. Он согласился с мнением древних философов — свет это поток корпускул, летящих по прямым.

Ниже мы увидим с какими трудностями встретился Ньютон, объясняя на основе корпускулярной теории явления отражения и преломления света.

ОПЯТЬ ЭФИР, НО … «Я НЕ ЗНАЮ, ЧТО ТАКОЕ ЭФИР»

Однако не оптические исследования Ньютона, а работы его идейных противников привели к тому, что ученые вновь возвратились к мысли о существовании эфира, мысли, беспокоившей и Ньютона. Правда, этот эфир не имел ничего общего с квинтэссенцией Аристотеля и движением небесных тел.

Впервые о нем упоминает Ф. М. Гримальди, иезуит и профессор математики в своей родной Болонье. В отличие от других иезуитов, занимавшихся главным образом экспериментальными исследованиями и избегавших обобщений, Гримальди не только ставил опыты, но и поднялся выше схоластических рассуждений. Экспериментируя с узкими лучами света, он увидел отклонения от общепринятых еще со времен Евклида законов геометрической оптики. Он обнаружил, что свет может огибать край непрозрачного препятствия и что при этом у границы между светом и тенью из белого света могут выделяться окрашенные полосы. Он подробно изучал явление и назвал его, в отличие от отражения и преломления, дифракцией (от латинского — разломанный) — термин, сохранившийся до наших дней.

Проделав в ставне два близких отверстия, он обнаружил, что там, где световые кольца, образуемые каждым из отверстий, взаимно налагаются, свет местами становится ярче, а местами темнее. Свет, прибавленный к свету, иногда дает тьму! Он не мог объяснить это чудо, но не сомневался в достоверности своих опытов.

Может быть это странное наблюдение побудило Гримальди воздержаться от публикации результатов опытов. Его труд был опубликован посмертно.

В этом замечательном труде, появившемся в 1665 году, помимо подробного описания опытов (в том числе и опытов с разложением белого света на окрашенные части при его прохождении через призму), содержатся и попытки их объяснения. Они основаны на сходстве с тем, что можно заметить, наблюдая волны на поверхности воды.

Гримальди считал, что свет может иметь в своей основе волновое движение некоторого флюида. Замечательно, что на рисунке, поясняющем распространение световой волны, он представляет ее поперечной, аналогичной волне на поверхности воды. О свойствах светоносного флюида Гримальди не сообщает никаких соображений. Он понимает, что заметив аналогию он еще не создал настоящей теории, не раскрыл существа процесса, не понял истинной природы света.

Опыты, аналогичные опытам Гримальди, через семь лет после выхода его книги, провел Гук, причем утверждал, что провел их независимо. В связи с этим один из известных историков науки замечает: «Однако хорошо известен крупный недостаток характера Гука, заключавшийся в том, что он всегда заявлял о своем приоритете на чужие изобретения».

Опыты Гука ничего не добавили к результатам Гримальди. Он повторил и гипотезу Гримальди о флюиде, волны которого переносят свет. Гук не пошел дальше мысли Гримальди о том, что свет может представлять собой волновой процесс, распространяющийся в некоей среде. Однако, как обычно, он облек свои мысли в неопределенную туманную форму.

Ньютон, считавший, что свет является потоком частиц — корпускул, — опытным путем обнаружил в нем наличие периодичности. Он клал стеклянную линзу выпуклой стороной на плоскую стеклянную пластинку и наблюдал в отраженном свете последовательность окрашенных колец, окружающих точку соприкосновения обоих стекол. Он заметил, что подобные окрашенные кольца видны и в проходящем свете, но порядок следования цветов в этом случае был обратным.

Стремясь получить из опыта как можно большую информацию, Ньютон установил зависимость радиусов колец от толщины слоя воздуха и от наклона падающих лучей света. Так Ньютон открыл, что свет обладает некой присущей ему периодичностью, которая выявляется этими опытами. Он извлек из опыта характеристику света, обусловливающую как величину радиуса, так и цвет каждого кольца.

Этим он предвосхитил позднейшие измерения длины волны света, которой не было эквивалента в его корпускулярной теории. Он считал открытие периодичности света фундаментальным достижением, пытался объяснить ее возникновение теорией «приступов». Суть ее состояла в том, что корпускулам света свойственна периодическая смена состояний: то преимущественного отражения, то преимущественного прохождения через границы прозрачных сред.

При этом он многократно подчеркивает двойственную природу света, лучи которого обладают цветностью, периодичностью и странным свойством, приводящим к тому, что в некоторых кристаллах отдельный луч порождает два луча, идущих в различных направлениях.

Ньютона тревожила невозможность объяснить с единой точки зрения факт прямолинейного распространения света и многообразные опыты, выявляющие его внутреннюю периодичность. Он обдумывал эфирную теорию и обсуждал ее следствия в мемуаре «Об одной гипотезе, объясняющей свойства света», вышедшем в 1675 году. Но в конце-концов отдает предпочтение корпускулярной теории.

Ньютон, подводя итог своим оптическим исследованиям, вынужден признать: «Я не знаю, что такое эфир».

ВОЗРОЖДЕНИЕ ЭФИРА

Возрождение эфира как среды, переносящей свет, связано с именем и трудами старшего современника Ньютона — Х. Гюйгенса, родившегося в 1626 году в Гааге и шестнадцатилетним юношей поступившего в Лейденский университет, чтобы изучать право. Однако, начиная с 1651 года, он публикует ряд оригинальных математических трактатов и начинает работать над усовершенствованием зрительных труб. Его телескоп был столь хорош, что позволил обнаружить спутник у планеты Сатурн. Сделав еще более крупный телескоп Гюйгенс увидел, что таинственные выступы Сатурна, описанные Галилеем, в действительности являются кольцами, окружающими планету. Занятия астрономией побудили Гюйгенса к разработке точных часов.

Уже в 1657 году он добился того, к чему стремился Галилей: соединил маятник с часовым механизмом, создав этим современные часы. Это был первый механический автомат, действующий без участия человека. Впоследствии Гюйгенс создал и часы с вращающимся маятником — балансиром, сохранившимся до наших дней во всех переносных механических часах. Он же предложил применять эти часы для определения географической долготы при вычислении положения корабля в море. Здесь не место для обсуждения значительных работ Гюйгенса в области механики, акустики и теплоты.

Наша тема — связанная с эфиром — переносит нас в 1678 год. Гюйгенс прочел перед Парижской академией наук свой мемуар. В нем он доказывал, что свет происходит от колебательного движения бесконечно тонкой и легкой среды — эфира — и распространяется в ней волнообразно, наподобие звука в воздухе.

Так, уже в новое время, эфир, вытесненный Коперником с небесных сфер, спустился на Землю, чтобы затем заполнить собой Вселенную. Теперь эфир уподобился реальной физической среде, обладающей определенными свойствами. Гюйгенс пишет: «Нельзя сомневаться в том, что свет состоит в движении какого-то вещества».

Издание мемуара надолго задержалось вследствие начавшихся во Франции религиозных распрей. Гюйгенс был вынужден покинуть Париж и возвратиться в Лейден.

Работая над мемуаром Гюйгенс знал о корпускулярной теории света, предложенной Ньютоном, и видел трудности, возникающие при ее применении. Знал он и о том, что сам Ньютон был вынужден признать, что свету свойственна особая периодичность, а корпускулы во время полета совершают колебания, которые передаются эфиру.

Мемуар Гюйгенса начинается с критики корпускулярной теории, которая не может объяснить прямолинейного распространения света в плотных телах (в которых корпускулы света должны рассеиваться в стороны).

В своем мемуаре Гюйгенс рассуждал о тончайшей, в высшей степени подвижной материи, заполняющей всю Вселенную и проникающей в прозрачные тела. Основываясь на этой гипотезе и на аналогии с волнами в воздухе, Гюйгенс получает законы отражения и преломления света.

Центральным пунктом его теории является принцип построения световой волны, образующейся путем взаимодействия множества сферических волн, складывающихся между собой. Это можно теперь увидеть во всех учебниках физики. Триумфом теории было объяснение явления двойного лучепреломления в кристаллах исландского шпата, в котором световая волна расщепляется на две волны, бегущие в различных направлениях.

Но здесь волновую теорию и эфир, описанный Гюйгенсом, поджидало первое поражение. Продольные волны, подобные звуковым волнам в воздухе, неспособны объяснить явления, наблюдаемые при последовательном прохождении световых волн через два кристалла. Мы обсудим этот опыт позже. Речь пойдет о поляризации света, которую невозможно объяснить, считая свет — продольными волнами эфира.

Это послужило Ньютону основным аргументом против волновой теории света, а следовательно и против существования светоносного эфира. Эфир снова сошел с научной сцены и память о нем надолго стерлась.

Идея Гримальди о поперечных колебаниях эфира тоже оказалась забытой и возродилась лишь через сто лет.

Следующий существенный шаг в истории эфира сделал Т. Юнг, английский врач, предметом диссертации которого в области медицины были исследования человеческого голоса. Юнг отличался широким диапазоном интересов. Вероятно по аналогии с периодическим усилением и ослаблением звуков, — звуковыми биениями, — которые он объяснял наложением двух звуковых волн, он заинтересовался периодичностью, возникающей при оптических явлениях. Он, по-видимому, узнал о них из книг Ньютона. Но теория «приступов», при помощи которой Ньютон объяснил цвета тонких пленок и пластин, казалась ему слишком искусственной.

Дискутируя с Ньютоном, Юнг опирается на самого Ньютона, который объяснил взаимным наложением двух волн сильные приливы у Филиппинского архипелага, изученные Галилеем.

Юнг проводит мысленный эксперимент с двумя волнами одинаковой длины и высоты, бегущими с постоянной скоростью по поверхности озера. Пусть эти волны приходят к каналу, выходящему из озера. Возможны два случая. Первый — вершины одной из волн накладываются на вершины другой; в канале возникает волна большей величины, чем при наличии лишь одной из волн. Второй случай — вершины одной из волн совпадают с впадинами другой; поверхность воды в канале остается ровной.

Юнг не только понял существо явления, но и придумал для него подходящий термин, составленный из двух латинских слов: интер (между) и ференс (несущий) — взаимодействие между несущими (волнами).

«Так вот, — заключает Юнг, — я полагаю, что подобные явления имеют место, когда смешиваются две порции света; и это наложение я называю общим законом интерференции света».

В 1802 году Юнг подкрепил свой мысленный опыт реальным. Он проделал булавкой два близких отверстия в непрозрачном экране и направил на них свет, проходящий через небольшое отверстие в ставне. От каждого из булавочных отверстий распространяются два расширяющихся конуса света. Там, где они перекрываются, образуются чередующиеся темные и светлые полосы. Сторонники корпускулярной теории света должны были ожидать в этой зоне равномерное усиление освещенности. Но этого не было.

Так Юнг впервые осуществил экспериментальное подтверждение волновой природы света. Волновая теория света, казалось, получила надежное опытное обоснование.

Юнг вывел целый ряд следствий из принципа интерференции. В частности он объяснил эмпирические результаты, полученные Ньютоном при наблюдении полос, возникающих в воздушном зазоре между выпуклой линзой и плоской стеклянной пластинкой. Более того, он заполнил этот зазор водой и, обнаружив, что кольца, видимые в этом зазоре, уплотнились, решил старый спор между Гюйгенсом и Ньютоном.

Из волновой теории Гюйгенса следовало, что длина волны света в более плотной среде уменьшается, а значит уменьшается и скорость света. Корпускулярная теория Ньютона предсказывала увеличение скорости света в более плотной среде. Опыт решил в пользу волновой теории.

Интересно, что выполнив описанный выше мысленный опыт с поперечными волнами на поверхности воды, Юнг продолжал, вслед за Гюйгенсом, считать, что свет распространяется волнами сжатия и разрежения.

Вероятно, тому было две причины. Одна из них — его опыты со звуковыми волнами сжатия и разрежения. Вторая — авторитет Гюйгенса и общая уверенность в том, что эфир аналогичен воздуху, а внутри газообразных сред поперечные волны невозможны.

Но под модель разреженного, способного сжиматься эфира уже была подведена мина. Ее заложил сам Гюйгенс. Он обнаружил, что луч света, расщепившийся на два луча, то есть испытавший двойное лучепреломление в кристалле исландского шпата, испытывает самое обычное преломление, если на его пути поставить второй кристалл исландского шпата, ориентированный так же, как первый. Если же второй кристалл повернуть, то и в нем тоже возникнет двойное лучепреломление.

Это было необъяснимо.

Многие исследователи в начале XIX века изучали эти явления. Французский военный инженер Э. Малюс в 1808 году сумел математически описать все детали таинственного поведения лучей света в кристаллах. Но он не смог найти основу своих расчетов в волновой теории света и вновь возвратился к корпускулярной теории, опираясь на предположение Ньютона о том, что корпускулы света обладают полярностью. Так возник термин «поляризация света», доживший до наших дней, а многообразные проявления поляризации света стали подтверждением корпускулярной теории Ньютона.

Победоносное шествование корпускулярной теории продолжалось семь лет.

Причиной дальнейшей метаморфозы во взглядах на природу света оказалась политика. Как известно, 1 марта 1815 года Наполеон бежал с острова Эльба и высадился на юге Франции. Дорожный инженер О. Френель примкнул волонтером к роялистским войскам, пытающимся преградить дорогу Наполеону. Эта попытка не удалась. Начались последние «Сто дней» величия Наполеона. Естественно, что роялист Френель уволен со службы и вынужден отправиться в провинцию.

Там, чтобы обрести душевный покой, он занялся оптическими опытами, не имея никакой специальной подготовки и пользуясь примитивным оборудованием.

«Сто дней» закончились поражением Наполеона и Френель был вновь принят на службу, но не перестал заниматься оптикой. Уже 15 октября того же года Френель направил Парижской академии наук два мемуара, посвященных мало изученной в то время проблеме распространения света.

Дифракцию — огибание светом непрозрачных препятствий, — обнаружил, как мы знаем, Гримальди. Исходя из своих опытов Френель пришел к заключению о том, что огибание глубоко связано с взаимодействием различных частей пучка света, попавших в точку наблюдения по различным путям. Так Френель, независимо от Юнга, пришел к принципу интерференции.

Обдумывая свои опыты Френель сопоставил принцип интерференции с принципом огибающей элементарных волн, выдвинутым Гюйгенсом. Внезапно он понял, что таким путем опровергается основное возражение против волновой теории света. Начиная с Ньютона ученых отпугивало то, что волновая теория не могла объяснить очевидного факта — прямолинейного распространения световых лучей.

Несложный расчет показал Френелю, что узкий пучок света, распространяющийся в пустом пространстве, где отсутствуют экраны или другие препятствия, продолжает распространяться прямолинейно. Почему? Потому, что все волны, которые, казалось, должны были бы разбегаться в стороны, гасят друг друга в результате интерференции. Эта же интерференция приводит к сложению тех частей «разбегающихся волн», которые образуют световые колебания, распространяющиеся вдоль прямой.

Позже профессиональные физики, лучше владевшие математикой, усовершенствовали расчеты Френеля и подтвердили его выводы: волновая теория безупречно объясняет факт прямолинейного распространения света в пространстве, свободном от препятствий.

Френель продолжал исследовать свойства света. Он вновь сопоставил дифракцию — огибание светом препятствий с интерференцией — взаимным наложением световых волн, испущенных общим источником, но прошедших различные пути. Через три года он представил на конкурс, объявленный Парижской академией наук, новый обширный мемуар. В конкурсную комиссию входили три убежденных ньютонианца: Лаплас, Пуассон и Био. Входили в нее также Гей-Люссак, не работавший в области оптики, но игравший роль беспристрастного арбитра, и Араго, обладавший способностью быстро и критически воспринимать новое.

Во время обсуждения мемуара Френеля, Пуассон высказал мнение, что из волновой теории, развитой Френелем, следуют выводы, противоречащие здравому смыслу. Так в центре геометрической тени непрозрачного диска должно наблюдаться светлое пятно. А в центре пучка света, проходящего сквозь круглое отверстие, на определенном расстоянии от него должно возникать темное пятно. Пуассон считал, что полученные им выводы свидетельствуют об ошибочности уравнений волновой теории Френеля.

Комиссия предложила Френелю подтвердить или опровергнуть опытом выводы Пуассона.

Френель при помощи Араго поставил опыты, подтвердившие предсказания Пуассона и показавшие, что «здравый смысл» не является аргументом в физической дискуссии.

Затем Френель приступил к исследованию поляризации света. Она в то время толковалась на основе корпускулярной теории и приводила, вопреки стремлению Ньютона, к все усложняющейся системе гипотез.

Френель до предела упростил экспериментальную установку и начал вместе с Араго изучать интерференцию поляризованных пучков света. Результаты были не совместимы ни с корпускулярной теорией, ни с теорией, рассматривающей свет как волны изменения плотности эфира, аналогичные звуку.

Опыты бесспорно показывали, что два луча, поляризованные в параллельных плоскостях, способны интерферировать, то есть усиливать или гасить друг друга. Напротив, два луча, поляризованные в перпендикулярных плоскостях, не способны погасить друг друга. Ничего подобного не наблюдается для звуковых волн, распространяющихся в воздухе. Френель и Араго наблюдали и другие явления, возникающие в поляризованном свете, для которых невозможно провести аналогичного опыта с акустическими волнами.

Но главным преткновением на пути к пониманию свойств поляризованного света была различная способность к интерференции лучей, поляризованных в параллельных и перпендикулярных плоскостях.

ВДОЛЬ ИЛИ ПОПЕРЕК?

Еще в 1815 году Ампер высказал Френелю идею о том, что световые колебания эфира совершаются не вдоль направления распространения луча, как это происходит в звуковых волнах, а поперек. Френель не согласился с этой идеей потому, что в то время уже было твердо установлено, что поперечные звуковые волны могут распространяться только в твердых телах. А эфир не мог быть твердым!

Интересно, что, узнав о результатах опытов Френеля и Араго, Юнг независимо пришел к мысли о поперечных колебаниях в лучах света. Но эта мысль казалась ему столь фантастической, что он предпочитал говорить о «воображаемом поперечном движении».

Только в 1821 году Френель окончательно убедился в том, что веря в продольные колебания эфира, невозможно понять всю совокупность явлений, наблюдаемых в поляризованном свете.

Френель был вынужден рассмотреть гипотезу поперечности волн света. Она казалась ему крайне сомнительной. Он пишет: «… эта гипотеза находилась в таком противоречии с общепринятыми представлениями о природе колебаний упругих жидкостей, что я долго не решался ее принять. И даже когда совокупность всех фактов и долгое размышление убедили меня, что эта гипотеза необходима для объяснения оптических явлений, я пытался раньше, чем представить ее на суд физиков, убедиться в том, что она не противоречит основам механики».

Френель решительно принимает гипотезу поперечных колебаний. Он пишет о колебаниях, происходящих в плоскостях, перпендикулярных направлению распространения световых лучей и совпадающих с фронтами световых волн.

Основываясь на этой гипотезе Френель объяснил все изобилие явлений, наблюдаемых в поляризованном свете, и показал, что она не противоречит ни одному из известных свойств света.

При этом Френелю пришлось смириться с необычайным сочетанием свойств эфира, который должен быть одновременно тончайшим невесомым флюидом (что признавали все физики) и наитвердейшим телом! Более твердым, чем сталь! Иначе без чего нельзя объяснить ряд известных свойств света и, прежде всего — свойств поляризованных световых волн.

Ситуация оказалась столь парадоксальной, что Араго, известный своей восприимчивостью к новым идеям и участвовавший в опытах Френеля, приведших в тупик гипотезу продольных колебаний, отказался подписать статью, написанную Френелем от имени их обоих. Араго не мог примириться с безумной мыслью о том, что эфир обладает столь несовместимыми свойствами.

Но Френель твердо стал на путь, указанный Ньютоном: нужно описывать при помощи математики как происходят явления, даже если их истинный механизм еще неизвестен.

В течении двух лет, работая в одиночку, Френель построил непротиворечивую теорию света, опирающуюся на модель поперечных колебаний эфира. Он примирился с тем, что эфир невесом, но колоссально упруг, что он заполняет всю Вселенную и проникает во все тела. Но ему пришлось пополнить первоначальную гипотезу тем, что свойства эфира, проникающего внутрь тел, зависят от природы этих тел и отличаются от свойств эфира, заполняющего пустое пространство.

Изменение упругости эфира на границе между свободным пространством и любым телом, а также на границе между различными веществами позволило Френелю объяснить отражение и преломление света на этих границах. Он сумел вычислить, какая часть света отражается от границы и какая пересекает ее, переходя из одной среды в другую. Его формулы и сейчас служат для вычисления зависимости отражения и преломления света от угла, под которым он подходит к границе, и от поляризации луча, падающего на границу. Они позволяют вычислить и то, насколько поляризация отраженного и преломленного света отличается от поляризации падающего света.

Теория Френеля объяснила зависимость скорости света в прозрачных телах от длины его волны и от свойств среды, в которой распространяются световые волны. Она объяснила и множество других оптических явлений, описание которых выходит за пределы этой книги.

Так Френель построил полную механическую теорию оптических явлений, заплатив за это признанием фантастического сочетания свойств светоносного эфира.

Но это признание сыграло и полезную роль в науке. Френель занялся изучением процессов, происходящих в упругих средах. Этим он заложил основы общей теории упругости, занявшей достойное место в физике и технике. Она стала фундаментом науки о сопротивлении материалов.

Старшие современники Френеля, признавая эффективность полученных им формул, отвергали модель поперечных колебаний эфира, основываясь на несовместимости его характеристик. К их числу принадлежали такие крупные ученые как Пуассон и Био, придерживавшиеся корпускулярной теории света, а также друг и сотрудник Френеля — Араго. Брюстер отвергал волновую теорию света, ибо считал невозможным приписать творцу «столь грубую идею, как заполнение всего пространства эфиром для того, чтобы созидать свет».

Как мы помним, Пуассон был первым, возразившим против волновой теории Френеля. Он указал, что из этой теории следует появление, при известных условиях, светлого пятна позади круглого непрозрачного экрана. Пуассон считал, что это противоречит здравому смыслу. Помним мы и то, что Френель вместе с Араго провел соответствующий опыт и продемонстрировал всем сомневающимся, что предсказание Пуассона подтвердилось. Это было первым подтверждением теории Френеля.

Позже Пуассон пришел к еще одному возражению. Он писал: если свет — действительно волны в упругом эфире, то их скорость должна зависеть только от величины упругости. При этом цвет не может влиять на распространение света. А это противоречит опыту, опровергает теорию Френеля и подтверждает корпускулярную теорию Ньютона.

Френель возразил, что в своей теории он не рассмотрел влияния вещества. Но если частицы вещества влияют на плотность эфира, то зависимость скорости света от цвета не только возможна, но необходима. Однако Френель не владел математикой настолько, чтобы доказать это математически.

Задачу решил один из ведущих французских математиков того времени О. Коши. Он приписал эфиру атомное строение, принимая, что размеры атомов эфира исчезающе малы по сравнению с расстоянием между ними, причем эти расстояния, в свою очередь малы по сравнению с длиной волны света. Коши получил формулу, из которой следовало, что внутри вещества, где длина волны света укорачивается, появляется зависимость показателя преломления от цвета.

Это же предсказывала корпускулярная теория Ньютона. Значит соответствующий опыт не мог стать решающим при сравнении волновой и корпускулярной теорий и для решения вопроса о существовании эфира.

Френель больше не участвовал в решении этих проблем. Вся его плодотворная и многогранная научная деятельность продолжалась менее десяти лет — от первого исследования дифракции света (1815 год) до избрания членом Парижской академии наук в 1823 году. Сильное кровотечение, перенесенное им в 1824 году, заставило его полностью отказаться от научной работы. Он умер 14 июля 1827 года. Умер ученый, выудивший истину из клубка ошибок и ложных предпосылок, и утвердившийся в истории науки как провидец и мудрец.

НЕВЕРОЯТНАЯ ХИМЕРА

В последующие годы многие физики изучали разнообразные оптические явления, а математики продолжали построение теории упругости. При этом обнаружился ряд трудностей.

Френель исходил из представления об абсолютно упругом эфире. Он считал, что упругость эфира неизменна, как в вакууме, так и внутри материальных тел. При переходе из одного вещества в другое и из вакуума в вещество скачком меняется лишь плотность эфира.

Теория упругости не допускала такого резкого перехода. Кроме того, теория упругости указывала, что в упругом эфире, наряду с поперечными (световыми) волнами, должны существовать продольные волны. Те, о которых писал Гюйгенс. Те, которые Френелю пришлось исключить из волновой теории, так как они не могли объяснить явления поляризации света. Те, которые не проявляли своего существования ни в одном опыте.

Ситуация усложнялась тем, что теория упругости была надежно подтверждена опытами, показавшими, что в упругих средах, таких, как сталь или стекло, существуют как поперечные, так и продольные волны, соответствующие изменениям плотности вещества.

Вместе с тем один из создателей теории упругости и теории течения жидкостей Г. Ламе, считая теорию Френеля верной, предполагал, что эфир является не твердой, а жидкой средой, почему-то способной к передаче поперечных волн.

Стокс тоже считал эфир жидкостью, причем идеальной жидкостью, лишенной внутреннего трения, что объясняет отсутствие его сопротивления движению планет. Стокс пытался примирить абсолютную твердость эфира с отсутствием сопротивления движению планет предположением, что эфир, наподобие сапожного вара, тверд по отношению к быстрым движениям — колебаниям световых волн. Но допускает без сопротивления медленные смещения. А движения планет очень медленны по сравнению со световыми колебаниями.

Однако никто не мог объяснить, что делает возможным распространение поперечных волн в жидком эфире. А поперечность световых волн была твердо установлена опытами с поляризованным светом.

Для того, чтобы объяснить отсутствие в эфире продольных волн, выдвигались гипотезы о том, что он абсолютно сжимаем, а тогда скорость продольных волн равна нулю. Но при этом исчезает и возможность существования поперечных волн.

Математик Грин указал на противоположную возможность — если эфир абсолютно несжимаем, то скорость продольных волн, волн сжатия и разрежения, бесконечно велика и они не воспринимаются приборами.

Основываясь на этой гипотезе, Грин в 1837 году разработал динамическую теорию эфира, не противоречащую теории упругости. Он построил модель эфира, основой которой были центры, взаимодействующие между собой с силами, быстро убывающими с расстоянием. Настолько быстро, что они совершенно исчезали на расстояниях, сравнимых с длиной волны света. При этом само собой получалась гипотеза Френеля о том, что упругость эфира одинакова во всех средах. Теория Грина соответствовала не всем данным опыта и, поэтому, не получила развития.

Немецкий физик — теоретик Ф. Нейман отказался от предположения о постоянстве упругости эфира, заменив его гипотезой о том, что постоянна во всех средах его плотность. Но и эта гипотеза не могла объяснить всю совокупность опытных фактов.

Наиболее поразительной была гипотеза ирландского физика Мак-Келлога. Он предположил, что единственная деформация, существующая в упругом эфире, это не сжатие и не сдвиг, а вращение. Но и эта гипотеза не выдержала сравнения с опытом.

Так эфир предстал перед физиками невероятной химерой — средой, объединяющей в себе несовместимые свойства: не сжимаемость и твердость, превосходя этой характеристикой лучшую сталь. Но одновременно он должен быть сильно разреженным, чтобы не препятствовать движению планет, и изменяющим скачком свою плотность при переходе из пустого пространства в вещество и из одного вещества в другое. Однако это противоречило надежным выводам теории упругости. Тут уместно заметить, что все эти бурные споры и разные мнения не базировались ни на чем конкретном — ни один из спорщиков не мог утверждать, что он обнаружил эфир хотя бы в одном опыте! Сражения шли на пустом месте, все ловили невидимку! Но для науки важно другое — шел лов! Пусть не был пойман эфир, но ловля приносила новые и важные открытия!

Так разгоревшаяся дискуссия стимулировала немецкого физика Й. Фраунгофера к углубленному исследованию дисперсии — связи показателя преломления вещества с длиной волны света, для которого производятся измерения. Во время своих исследований Фраунгофер изучил расположение множества (до 700) темных линий, видимых в спектре Солнца. Эти исследования в конце концов привели немецких ученых Г. Кирхгофа и Р. Бунзена к разработке спектрального анализа, совершившего революцию в физике и химии.

Особое место в нашем повествовании занимает ирландец У. Гамильтон. Гамильтон уточнил научный метод, созданный Ньютоном. Он различал три стадии развития науки. В первой стадии необходимо накапливать и систематизировать опытные факты и на их основе, пользуясь индукцией и анализом, получать законы (Ньютон называл их «принципами»). Во второй стадии, пользуясь дедукцией и синтезом, извлекать следствия из этих законов, предсказывая неизвестные ранее явления. Затем следует ставить новые опыты, чтобы подтвердить или отвергнуть полученные следствия.

Гамильтон решил построить такую формальную математическую теорию света, которая не нуждается ни в волновой, ни в корпускулярной модели оптических явлений и не противоречит ни одной из них. За образец при построении новой теории Гамильтон принял аналитическую механику, созданную великим французским математиком и механиком Ж. Лагранжем.

Лагранж следовал идеям Эйлера, начавшего построение механики на основе небольшого набора определений и аксиом. Лагранж предупреждал читателя:

«В этой работе вы не найдете рисунков. Излагаемые мною методы не нуждаются ни в построениях, ни в рассуждениях геометрического или механического характера, а лишь в алгебраических операциях, подчиняющихся строгим и единообразным правилам».

В результате Лагранж объединил и развил все разделы механики — статику и гидростатику, динамику и гидродинамику (в позднейшее время к ним были присоединены аэродинамика, теория упругости и механика твердых тел).

Двигаясь в этом направлении Гамильтон создал удивительную оптику, превратив геометрическую оптику в формальную теорию, позволяющую проектировать приборы без геометрических построений. В формализме Гамильтона неожиданно объединились оптика и механика. Этот формализм почти через девяносто лет лег в основу волновой механики Л. де Бройля и квантовой механики Э. Шредингера. Скачок в микромир, о котором Гамильтон даже не помышлял!

Гамильтон доказал, что он достиг поставленной цели, предсказав на основе своей теории неизвестные явления, обнаруженные последующими опытами. Самое известное из них — коническая рефракция: узкий луч света, падающий на некоторые кристаллы, например, на кристалл исландского шпата, ведет себя необычно. В зависимости от ориентации луча света относительно осей кристалла, узкий луч распространяется внутри кристалла в форме расходящегося полого конуса и выходит из кристалла в форме полого цилиндра. Поставив на пути этого луча экран, можно увидеть на нем светлое кольцо, размеры которого не зависят от расстояния до экрана. Это явление называют внутренней конической рефракцией. При другом положении осей кристалла падающий на него луч испытывает обычное преломление, но выходит из кристалла в форме расходящегося полого конуса. В этом случае размер светлого кольца на экране зависит от расстояния до экрана (внешняя коническая рефракция).

Так Гамильтон построил математическую теорию оптических явлений, не связанную ни с эфиром, ни с корпускулами. Но физики не могли избежать вопроса — что же такое свет?

ЭФИРНЫЙ ВЕТЕР

Френелевская гипотеза упругости эфира породила вопрос: неподвижен ли эфир? Или он неподвижен только в пустом пространстве, а та его часть, что проникает внутрь материальных тел, движется вместе с ними?

Араго проделал простой опыт, наблюдая преломление света, приходящего от звезд. Оказалось, что вопреки корпускулярной теории, которой он придерживался, движение Земли не влияет на преломление света.

Араго попросил Френеля рассмотреть задачу: совместим ли этот результат с волновой теорией света? Френель ответил, что результат согласуется с волновой теорией, если признать, что эфир увлекается веществом лишь частично. Это значит, что движущееся тело увлекает не весь содержащийся в нем эфир, а лишь его избыток.

Вспомним, что для объяснения преломления света Френель предположил, что эфир, проникая внутрь прозрачных сред, уплотняется. Это значит, что внутри прозрачных тел имеется избыток эфира по сравнению с его количеством, находящимся в равновеликом объеме пустого пространства. Чем больше в данном теле избыток эфира, тем больше преломляющая способность этого тела, тем меньше в нем скорость распространения света. Отвечая Араго, Френель был вынужден принять, что движущееся тело увлекает с собой только избыток находящегося внутри него эфира.

Мысль Френеля о частичном увлечении эфира движущимся телом подтверждает и эффект Допплера. Австрийский физик Х. Допплер показал, что при приближении источника света к наблюдателю период колебаний света кажется меньшим, чем для неподвижного источника. Напротив, при удалении источника период колебаний света кажется большим (обычно говорят соответственно о «фиолетовом» и «красном» смещении, то есть об изменении цвета в сторону фиолетового или красного концов видимого спектра).

Заметим, что эффект Допплера наблюдается и в акустике как повышение или соответственно понижение тона гудка паровоза, проходящего мимо наблюдателя.

Гипотезу частичного увлечения эфира оспаривал английский физик и математик Д. Стокс. Он, среди прочего, разработал теорию вязкости жидкостей и рассмотрел процесс движения твердых тел в таких жидкостях. На основе этой теории Стокс склонялся к идее о том, что эфир полностью увлекается движущимся веществом, но при удалении от движущегося вещества скорость эфира постепенно уменьшается до нуля.


Теперь пора вспомнить английского астронома Д. Брадлея и его замечательное открытие. История этого открытия прослеживается со времени Коперника. Считалось, что годичное движение Земли должно сопровождаться регулярным смещением видимого положения звезд на небе. Многие астрономы пытались его обнаружить, но тщетно. Лишь Гук, убежденный в том, что это смещение должно существовать, объявил о том, что он его обнаружил. Причина этого ожидаемого смещения совпадает с кажущимся смещением предметов, когда их наблюдают то одним, то другим глазом. Такое смещение называют параллаксом. Сейчас его применяют в приборах для измерения расстояния — дальномерах.

Брадлей тоже поставил целью обнаружить это «параллаксическое смещение». В его время уже было ясно, что смещение очень мало. Поэтому он тщательно готовился к наблюдениям. Он воспользовался хорошим телескопом, построенным его приятелем С. Молине. Они установили телескоп почти вертикально, так, что одна из звезд созвездия Дракона появлялась в поле зрения каждый раз, когда проходила через меридиан. Были приняты все возможные меры, чтобы телескоп не менял своего положения в течении года.

Первые наблюдения были проведены 14 декабря 1725 года. Уже 28 декабря Брадлею показалось, что он заметил небольшое перемещение звезды на юг. 1 января смещение звезды наблюдалось совершенно надежно. 13 марта звезда достигла крайнего положения и начала смещаться к северу. В сентябре она снова изменила направление движения и постепенно возвратилась в исходное положение.

Казалось, Брадлей должен торжествовать. Ведь он ожидал, что наблюдая видимое положение звезды с различных точек орбиты Земли, он будет воспринимать результат наблюдения, как смещение звезды относительно оси телескопа. Но он умел критически относится к результатам наблюдения. Он сразу обнаружил нечто неожиданное: звезда изменяла направление движения тремя месяцами позже, чем если бы смещение происходило вследствие параллакса.

Тогда Брадлей предположил, что видимое смещение звезды связано с колебаниями земной оси, но и эта гипотеза была отвергнута наблюдениями. Исследования продолжались еще два года. В это время Брадлей выдвинул и отверг несколько гипотез.

Вскоре Брадлей установил собственный телескоп, при помощи которого он мог видеть регулярные смещения еще нескольких звезд. Сопоставляя результаты наблюдения всех звезд, доступных его телескопу, Брадлей внезапно понял, что происходит.

Он видел результат, проистекающий из наложения двух явлений — годичного движения Земли и конечной величины скорости света.

Это легко понять из простого примера. На якоре стоит корабль. Внезапно его навылет пробивает снаряд. Взглянув через два отверстия, вы увидите стрелявшую пушку. Пусть теперь корабль движется перпендикулярно направлению выстрела. Когда он поравняется с пушкой, она вновь стреляет. Но за то время, пока снаряд летит от одного борта к другому, корабль перемещается так, что выходная пробоина оказывается смещенной относительно входной. В результате этого прямая, проведенная через них, пройдет мимо пушки.

Видимое смещение звезды вызвано движением телескопа (вместе с Землей) за то время, пока ее свет преодолевал расстояние от объектива телескопа к его окуляру. Если бы скорость света была бесконечно большой, это смещение (его называют аберрацией света) было бы равно нулю.

Вычисления Брадлея показали, что скорость света почти в десять тысяч раз превышает орбитальную скорость Земли. Прекрасная точность для того времени! Вспомним, что из наблюдений движения спутников Юпитера датский астроном О. Ремер вычислил скорость света и оценил время прохождения света от Солнца до Земли величиной, лежащей между 8 и 11 минутами. Оценки Брадлея дают для этого времени величину 8 минут 13 секунд, что очень близко к современному значению.

Брадлей не удовлетворился своим замечательным открытием. Он продолжал измерения смещения звезд, вызванного параллаксом. Его результат: величина параллакса менее половины угловой секунды. Это полностью опровергло претензии Гука, сообщившего, что он наблюдал параллакс величиной в 30 угловых секунд.

Как видно из нашего примера с кораблем, простреливаемым пушкой, явление аберрации света легко объясняется корпускулярной теорией Ньютона.

Что может сказать по этому поводу волновая теория?

Ответ прост. Результат будет таким же. Величина аберрации определяется временем прохождения световых волн внутри телескопа и, конечно, скоростью движения Земли.

Но, внимание!

Если бы эфир полностью увлекался движением Земли и был неподвижен относительно телескопа, аберрация была бы равна нулю.

Явление аберрации света указывает на то, что светоносный эфир не участвует в движении телескопа.

Первая попытка проверить в лаборатории факт увлечения движущимся веществом содержащегося в нем эфира была предпринята в 1851 году французским физиком А. Физо. В его приборе наблюдению подлежала интерференция двух лучей света. Один из них проходил сквозь столб воды в направлении ее течения, а второй навстречу течению воды. Если вода увлекает эфир, то интерференционные полосы должны были смещаться по сравнению с их положением, наблюдаемым при неподвижной воде. Опыт подтвердил гипотезу Френеля о частичном увлечении эфира движущейся водой.

Вывод Физо был подтвержден другими исследователями, но еще один опыт привел к противоположному результату.

Замечательный американский оптик-экспериментатор А. Майкельсон в 1881 году решил определить скорость движения Земли относительно эфира. Скорость обращения Земли вокруг Солнца была хорошо известна астрономам. Она в среднем равна 30 километрам в секунду, что в десять тысяч раз меньше скорости света. Но Майкельсон незадолго до этого изобрел замечательный прибор — интерферометр, — теперь носящий его имя. И он решил его использовать в своем эксперименте.

Майкельсон построил для измерения скорости Земли относительно эфира специальный высокоточный интерферометр, расположенный на гранитной плите, плававшей в ванне с ртутью. По смещению интерференционных полос этот интерферометр мог зафиксировать скорость в сто раз меньшую, чем можно ожидать, если считать, что эфир частично увлекается Землей.

Длительные опыты, на которые возлагались большие надежды, дали отрицательный результат. «Эфирный ветер» — движение эфира относительно Земли, не был обнаружен! Один из крупнейших представителей классической физики, голландский физик-теоретик Г. А. Лоренц выступил с критикой опыта Майкельсона. Лоренц был слишком авторитетной фигурой, чтобы пренебречь его мнением.

Майкельсон продолжал думать. Работая вместе с Э. Морли, он повысил точность своего прибора и через шесть лет повторил опыт. Эфирный ветер снова отсутствовал.

Возникла драматическая ситуация. Три безупречных опыта не согласовывались между собой. Опыт Майкельсона свидетельствовал о том, что Земля полностью увлекает окружающий эфир, во всяком случае — вблизи поверхности Земли. Явление аберрации света и ряд более поздних опытов однозначно указывали на неподвижность эфира, на то, что эфир не участвует в движении материальных тел. Опыт Физо и аналогичные ему опыты указывали на частичное увлечение эфира внутри плотных прозрачных сред.

Ученым было над чем задуматься… Они еще не знали, что впереди — большие сюрпризы.

Следуя логике науки, мы оторвались от хронологии.

За время, прошедшее между трудами Ньютона и опытом Майкельсона, в науке произошло много событий, без учета которых трудно осознать, перед какой пропастью поставил ученых один единственный опыт, надежно показавший, что эфирный ветер отсутствует.

Мы возвратимся к загадке эфирного ветра после того, как ознакомимся с новой теорией света, заменившей теорию Френеля. С теорией, сделавшей ненужными все гипотезы о противоречивых механических свойствах эфира. Речь идет о теории Максвелла. Она построена на фундаменте, заложенном Фарадеем, который, в свою очередь, опирался на труды целого ряда ученых.

Глава 4. ПРОЩАНИЕ С ФЛЮИДАМИ