Лаборатория химических историй. От электрона до молекулярных машин — страница 10 из 48

льников, и площадь прямоугольника будет равна количеству арбузов в этой группе. Получим диаграмму, показанную на рис. 1.47.



Для упрощения получившаяся пирамидка сделана симметричной, хотя правая и левая стороны у нее могли быть неодинаковы. Итак, мы вычислили среднюю массу арбуза – 8 кг, и это соответствует серединному прямоугольнику. Назовем эту величину среднечисленной массой, поскольку для расчета было использовано число имеющихся арбузов.

Так как мы уже рассортировали арбузы по массе и у нас имеется семь мешков (семь прямоугольников на диаграмме), вычислим среднюю массу арбуза другим способом. На диаграмме (рис. 1.48) показана та же пирамида, внутри каждого прямоугольника полужирным шрифтом выделена суммарная масса арбузов – то есть масса одного арбуза, умноженная на их число в этом мешке. Далее определим массовую долю каждого мешка, разделив его массу на общую массу – 640 кг. Полученные массовые доли указаны в прямоугольниках курсивом (рис. 1.48).



Естественно, сумма массовых долей всегда равна единице, 0,063+0,103+0,142+0,20+0,183+0,172+0,138 = 1. Для определения средней массы арбуза умножим массовую долю каждого мешка на массу находящегося в нем арбуза – и все просуммируем:

0,063 · 5 + 0,103 · 6 + 0,142 · 7 + 0,28 + 0,183 · 9 + 0,172 · 10 + 0,138 · 11 = 8,4 кг.

Назовем полученную среднюю массу арбуза среднемассовой, поскольку для расчета были использованы массовые доли. Эта величина немного больше полученной ранее среднечисленной массы (8 кг), что неудивительно – ведь эти величины вычисляли разными способами. Очевидно, что первый способ проще и логичнее. Потому невольно возникает вопрос: зачем нужен второй, совершенно головоломный способ? Ответ мы получим, рассмотрев урожай арбузов на соседней бахче (рис. 1.49).



Результаты, полученные для собранного урожая на второй бахче, точно такие же, как и на первой: общая масса 13 · 6 + 17 · 7 + 20 · 8 + 17 · 9 + 13 · 10 = 640 кг. Среднечисленная масса одного арбуза 640 / (13+17+20+17+13) = 8 кг. Однако диаграмма второй бахчи внешне отличается от первой – она несколько ýже, то есть в массах арбузов меньший разброс. Такова визуальная картина, но как охарактеризовать это количественно? Нам может помочь среднемассовая величина. Если провести те же вычисления, что для первой бахчи, то для второй бахчи мы получим 8,3 кг. Мерой разброса арбузов по массе (то есть ширины диаграммы) может служить отношение среднемассовой величины к среднечисленной: на первой бахче 8,4/8 = 1,05, а на второй 8,3/8 = 1,04, то есть на второй бахче эта величина меньше. А какая бахча лучше? Оставим решать этот вопрос тем, кто выращивает арбузы, и двинемся дальше – теперь мы заменим арбузы полимерными молекулами.

Переходим к полимерам

Поскольку даже в крохотном образце полимера, взятом для исследования, содержится совершенно астрономическое число молекул, ступенчатая диаграмма, показанная на рис. 1.48, превратится в сплошную колоколообразную линию, называемую кривой молекулярно-массового распределения (рис. 1.50). Обычно она не симметрична, правая и левая ее ветви не одинаковы.



На рис. 1.50 показаны значения среднечисленной (обозначена Mn) и среднемассовой (обозначена Mw) молекулярных масс, которые имеют тот же смысл, что и в примере с арбузами. А ширина кривой, характеризующая степень разброса относительно среднего значения, точно так же вычисляется как Mw/Mn = 1,23. В полимерной химии ее называют полидисперсностью (от лат. dispersio – «рассеяние»). Площадь заштрихованного участка под кривой соответствует массовой доле той части полимера, которая имеет молекулярную массу в диапазоне n1 – n2, и это приблизительно соответствует мешку с арбузами одинаковой массы из предыдущей части рассказа. Такую часть полимера с молекулярной массой в небольшом диапазоне называют фракцией.

Существование у одного полимера двух значений молекулярной массы обычно удивляет синтетиков-органиков, которые точно знают, что индивидуальное вещество имеет строго определенную и только одну молекулярную массу, поскольку все молекулы одинаковы. В отличие от этого полимер – это смесь молекул различной величины. Два значения молекулярных масс являются не искусственно выдуманными – это результат того, что различные методы определения молекулярной массы дают разные значения. Среднечисленное значение дают методы измерения, более чувствительные к присутствию коротких молекул: например, криоскопия – понижение температуры замерзания раствора в сравнении с чистым растворителем – или эбулиоскопия – повышение температуры кипения раствора в сравнении с чистым растворителем.

Существуют методы, которые более чувствительны к присутствию больших молекул, они позволяют определить среднемассовую молекулярную массу, это светорассеяние раствора полимера или результаты его центрифугирования.

Итак, если у нас имеется образец полимера, то мы можем определить для него два значения средней молекулярной массы, а их отношение даст величину полидисперсности. Средняя молекулярная масса и полидисперсность, эти два числа – основная характеристика полимера. Но как можно увидеть саму кривую, показанную на рис. 1.50? Для этого проводят разделение на фракции – то есть фракционирование, а наиболее распространенный метод называется гель-хроматографированием. Раствор полимера пропускают через набухший пористый гель и анализируют выходящие порции: сначала выходят большие молекулы, затем те, что меньше, поскольку они лучше удерживаются в порах геля.

Как влияют числовые характеристики полимера на его свойства? Общий принцип таков: чем выше значение средней молекулярной массы, тем выше прочность монолитных изделий и волокон. А какая полидисперсность лучше, большая или маленькая? Решение задачи с арбузами мы оставили на усмотрение агрономов, но мы имеем возможность рассмотреть вопрос подробнее при переходе к полимерам. С ростом полидисперсности облегчается переход полимера в расплавленное состояние и упрощается вытягивание волокон, однако прочность волокон снижается. Низкая полидисперсность обеспечивает стабильность технологических характеристик полимера, но переработка полимера требует исключительно точного соблюдения всех технологических параметров, что не всегда осуществимо. Поэтому в зависимости от конкретных условий величину полидисперсности выбирают в определенном интервале.

Старое обозначение новых измерений

Химики-полимерщики давно заметили, что кривая молекулярно-массового распределения очень напоминает хорошо известное математикам распределение случайной величины, чаще называемое гауссовым распределением – по имени создателя этой зависимости. Она описывает многие группы предметов, которые в основной массе имеют среднее значение и, кроме того, содержат некоторые отклонения в обе стороны. Например, рост людей или их вес, время жизни живых организмов, срок службы серийно изготавливаемого оборудования (автомобилей, лампочек, электромоторов), а также рассеяние точек попадания при выстрелах из огнестрельного оружия, скорость молекул в газе и многое другое. Во время выборной кампании анализ такой зависимости по результатам, полученным с различных избирательных участков, позволяет оценить корректность процедуры голосования. Фундаментальное и буквально «всеохватывающее» значение этой зависимости было отмечено особым образом: внешний вид кривой и портрет ее создателя – К. Ф. Гаусса – в свое время были изображены на немецкой денежной купюре достоинством в десять марок (рис. 1.51).



Гауссова кривая имеет те же основные параметры, что и молекулярно-массовое распределение, среднее значение (строгое название – математическое ожидание μ) и дисперсию (что практически аналогично полидисперсности), которую часто определяют как ширину кривой на середине высоты – σ (рис. 1.52).



Естественно, в полимерной химии стали оценивать полидисперсность точно таким же образом – вместо того чтобы проводить измерения средней молекулярной массы двумя различными методами. Однако традиция сохранилась, и эту величину, найденную измерениями на графике, по-прежнему обозначают Mw/Mn, хотя все понимают, что никто не измеряет отдельно Mw и Mn и полидисперсность получают из параметров графика.

Логика и расчет

Возьмем линейный кремнийорганический полимер (рис. 1.53), у которого на одном конце каждой макромолекулы имеется реакционноспособная группа – ONa.



Допустим, что состав полимера описывается кривой молекулярно-массового распределения, у которой Mсредн. = 20 000 и полидисперсность Mw/Mn = 2 (берем традиционное обозначение этой величины). Далее на его основе мы получим разветвленный полимер. В качестве разветвляющего центра возьмем тетрахлорид кремния SiCl4, который будет реагировать с концевыми группами по схеме, показанной на рис. 1.54 (волнистая линия означает фрагмент полимерной цепи).



Если от одного центра отходит несколько полимерных ветвей, такие полимеры называют звездообразными. Для дальнейших рассуждений заменим химические символы условными обозначениями: разветвляющий центр обозначим точкой, а отходящие от него полимерные ветви – волнистыми линиями. В результате молекула звездообразного полимера будет выглядеть так, как показано на рис. 1.55. Естественно, что отходящие от центра ветви имеют различную длину, поскольку исходный полимер – полидисперсный.



Какова ожидаемая средняя молекулярная масса такого полимера? Можем предположить, что она в четыре раза больше, чем у исходного полимера, – то есть 80 000. Кроме того, исходя из здравого смысла, мы можем предположить, что к разветвляющему центру в момент реагирования будут подходить молекулы разной длины (как показано на рис. 1.55), а образование звездообразных молекул, содержащих только короткие (рис. 1.56, слева) или только длинные ветви (рис. 1.56, справа), очень маловероятно.