Лаборатория химических историй. От электрона до молекулярных машин — страница 11 из 48



Из этого следует, что разветвляющий центр, объединяя преимущественно молекулы разной длины, как бы усредняет всю систему, делая полимер более однородным. Иначе говоря, в полимере возникнет меньший разброс по величине молекулярных масс, то есть более низкая полидисперсность. Таким образом, у полученного разветвленного полимера величина Mw/Mn будет существенно ниже, чем у исходного линейного полимера.

Правильны ли наши рассуждения? Что касается ожидаемой средней молекулярной массы, то они правильны, но рассуждения относительно полидисперсности абсолютно не верны. Как установить, что они ошибочны? Перейдем от обычных логических рассуждений к научным методам. Теория вероятностей, предметом которой являются и гауссовы распределения, указывает (и это доказано на уровне теорем), что молекулярная масса должна возрасти в четыре раза (здесь мы не ошиблись), но и полидисперсность тоже должна возрасти в четыре раза. Такой совершенно неожиданный вывод известен далеко не всем химикам-полимерщикам. Почему же теория так резко расходится со здравым смыслом? Может, она не верна? Нет, она верна, и это подтверждают эксперименты по синтезу подобных полимеров.

Окончательный вывод будет таким: логические рассуждения при оценке событий, описываемых теорией вероятностей, довольно часто приводят к ошибочным выводам, и в таких случаях правильнее опираться на математику, а не на рассуждения. Впрочем, логические ошибки возможны и во многих других случаях. Пример типичной логически ошибочной конструкции: "Все школьники носят рюкзаки. Моя бабушка носит рюкзак. Следовательно, моя бабушка – школьница".

Создать новую науку

В ХХ в. полимеры уверенно входят в повседневную жизнь. В первое десятилетие были получены патенты на производство полистирола, поливинилхлорида, бакелита (пластмассы на основе фенольных смол). Искусственные волокна на основе целлюлозы, о которых рассказано в разделе «Лидер среди природных полимеров», были уже хорошо известны. К началу 1920-х гг. промышленность уже производит определенный набор полимеров. Интересно то, что науки о полимерах и самого термина «полимеры» в то время не существовало, – употребляли название «смола» (resin). Химики-органики, работавшие в научных лабораториях, рассматривали получение смолообразных продуктов как результат неудачного синтеза и не проявляли к ним интереса. Большинство считало, что полимеры – это определенный вид коллоидных систем. Поясним, что коллоидными называются системы, в которых в равновесии существуют – не разделяясь, но и не смешиваясь в одну, – две различные фазы: жидкость – жидкость (эмульсии), жидкость – твердое тело (суспензии), газ – твердое тело (дымы), газ – жидкость (туманы). Но были и ученые, которые считали, что полимеры представляют собой небольшие молекулы, объединенные в агрегаты клубкообразной формы, которые называли мицеллами (лат. mica – «частица», «крупинка»). Таким образом, полимеры были чем-то непонятным, зато хорошим и полезным.

История знает много примеров, когда свежая интересная теория предлагается сразу несколькими учеными, причем независимо друг от друга. Про это говорят: "Идея висела в воздухе". В случае с полимерами, что удивительно, это был всего лишь один (!) ученый. Новые идеи всегда пробиваются с трудом, что и произошло с наукой о полимерах. Расскажем о ее основоположнике подробнее.

Немецкий ученый-химик Г. Штаудингер (1881–1965) получил степень доктора наук в возрасте всего 22 лет, он продолжил свои исследования в органической химии под руководством Д. Тиле (его имя уже упоминалось в разделе "Лидер среди природных полимеров") в Страсбургском университете. В ходе исследований он открыл новый класс соединений R2C=C=O, названных кетенами. Во время Первой мировой войны Штаудингер подключился к решению хозяйственных задач страны: создал ароматизаторы – заменители натуральных продуктов (кофе, перца), которые во время войны были в дефиците. Кроме того, он не остался в стороне от политических вопросов, выходящих за рамки академической науки, и в 1917 г. опубликовал статью «Техника и война» (Technik und Krieg), где привел аккуратный подсчет промышленных потенциалов воюющих сторон. В обращении к немецкому имперскому Генеральному штабу он утверждал, что по результатам его расчета война уже фактически проиграна Германией и должна быть немедленно закончена, дальнейшее кровопролитие бессмысленно. Согласитесь, научный подход к подобным проблемам вызывает большее уважение, нежели политические лозунги о войне до победного конца? Такое смелое заявление противоречило имперскому духу Германии. Штаудингер был уволен с основного места работы и допрошен органами безопасности, позже увольнение отменили, поставив условие, что он не станет публично осуждать новую власть. Выезд из страны для участия в научных конференциях ему был запрещен.

Настоящий бойцовский характер Штаудингера проявился в 1920 г., когда он опубликовал статью "О полимеризации" (Über Polymerisation), где сформулировал сенсационное утверждение: полимеры – это длинные молекулы с очень большой молекулярной массой, он назвал их "макромолекулами", а реакцию, приводящую к их образованию, – "полимеризацией". С этого момента началась многолетняя вражда с классическими химиками-органиками, а также со специалистами по коллоидной химии. Они утверждали, что измеренные высокие молекулярные массы являются только кажущимися и представляют собой результат агрегации небольших молекул в коллоиды. Большинство коллег Штаудингера отказывались допустить, что маленькие молекулы могут объединяться друг с другом ковалентными связями с образованием высокомолекулярных соединений. Утверждение Штаудингера, что каучук, целлюлоза и многие другие подобные соединения представляют собой длинные цепочки из повторяющихся низкомолекулярных фрагментов, химики никак принять не могли[2][3].

Для доказательства своего утверждения Штаудингер привел результаты экспериментов. Например, натуральный каучук (о нем рассказано в разделе "Когда упорство выше знаний"), по мнению специалистов, представлял собой агрегат-мицеллу из отдельных молекул изопрена СН2=С(СН3) – СН=СН3, которые удерживаются вместе за счет притяжения между двойными связями. Логика Штаудингера была проста: если удалить двойные связи, удерживающие молекулы изопрена вместе, то каучук должен превратиться в жидкость, состоящую из одиночных молекул. Штаудингер гидрировал каучук, атомы водорода присоединились к двойным связям, которые после этого исчезли, но полученное вещество оставалось твердым продуктом, похожим по свойствам на натуральный каучук (рис. 1.57).



Аналогичное превращение он провел с полистиролом, получив подобный результат (рис. 1.58).



Штаудингер ввел в практику контроль молекулярной массы полимера с помощью вискозиметрии – измерение вязкости раствора полимера в органическом растворителе. Именно такой метод исследования показал, что полимеры – уникальные объекты. В случае если цепь полимера жесткая, вязкость раствора с концентрацией всего лишь 0,1–0,2 % может в 4–5 раз (!) превышать вязкость растворителя. Подобное не наблюдается ни для каких других веществ. Проводя химическую модификацию некоторых полимеров, ученый с помощью этого метода показал, что молекулярная масса практически не меняется.

Штаудингер заметно расширил представления о вариантах строения полимеров: он показал, что существуют разветвленные макромолекулы и полимерные сетки, которые образуются при трехмерной полимеризации. Таким образом, он смог предложить совершенно новый взгляд на крупную группу известных соединений.

В своей автобиографии Штаудингер писал: "Мои коллеги были очень скептически настроены по отношению к моей теории, и все, кто встречал мои прежние публикации в области низкомолекулярной химии (например, химия кетенов), спрашивали меня, почему я пренебрегаю этой интересной областью и продолжаю работать с плохо изученными и неинтересными соединениями вроде резины и синтетических полимеров". В то время химию этих соединений, благодаря их свойствам, часто называли химией смазок.

С середины 1930-х гг. макромолекулярная теория Штаудингера стала постепенно признаваться научным сообществом. В 1932 г. вышла классическая монография Г. Штаудингера "Высокомолекулярные органические соединения, каучук и целлюлоза", в которой была подробно описана его новая теория и результаты экспериментов. В 1940-е гг. при Фрайбургском университете был создан научно-исследовательский институт макромолекулярной химии, руководимый Штаудингером. За свои заслуги он получил многочисленные награды: медаль Эмиля Фишера Германского химического общества (1930), медаль Леблана Французского химического общества (1931), премию Станислава Канниццаро Итальянской национальной академии наук (1933) и другие.

Тем не менее сложности с продвижением новой науки не закончились, причем это было результатом упорства самого Штаудингера, который уже, вероятно, не представлял себя вне привычной обстановки "сражений". Он утверждал, что полимеры – прямые гигантские молекулы, которые не гнутся и не сворачиваются (по современной терминологии – жесткоцепные), однако эксперименты показывали, что существуют и гибкоцепные – сворачивающиеся в клубки. Видимо, они напоминали Штаудингеру "ненавистные" мицеллы, и он категорически отвергал такие взгляды. В результате в лагере "полимерщиков" разгорелись споры, что, естественно, затормозило принятие новой науки широкой ученой общественностью. Косвенным результатом этих событий было следующее: Штаудингер многократно был номинирован на Нобелевскую премию, но получил ее только в 1953 г., то есть спустя более чем тридцать лет после появления этой новой области химии.

Среди заслуг Штаудингера, основавшего новую науку, почти незаметным осталось одно его достижение: в 1920-х гг. он создал полимер, который в то время не получил промышленного развития. Но в наши дни это один из широко применяемых пластиков – речь идет о полимеризации формальдегида H